Hydrogen for the prevention and treatment of cardiovascular diseasesScientific Research
A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600250/
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Redox dysregulation and inflammatory dysregulation occur and lead to cellular abnormalities and pathological conditions leading to cardiovascular disease. Despite years of intensive research, there is still no safe and effective way to prevent and treat it. Molecular hydrogen has recently been studied in preclinical and clinical studies in various diseases associated with oxidative and inflammatory stress, such as primarily administered by inhalation, drinking hydrogen-rich water, or injecting hydrogen-rich saline. It favorably regulates signal transduction and gene expression, thereby inhibiting pro-inflammatory cytokines, excess ROS production, and activation of the antioxidant transcription factor Nrf2. Although H2 appears to be an important biomolecule with antioxidant, anti-inflammatory and anti-apoptotic effects, its exact mechanism of action remains elusive. There are no reports of clinical toxicity; however, some data suggest that H2 has mild stimulant effects that may mediate some of its benefits. Mechanistic data combined with preclinical and clinical studies suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other diseases.
Conclusions
Excessive free radical production is a mediator of many cardiovascular diseases, such as ischemia/reperfusion injury, including those associated with graft storage during heart transplantation, and radiation-induced heart disease. To prevent or at least mitigate the development of oxidative stress, new approaches must be developed to effectively and safely reduce the pathological consequences of excess ROS levels.
Studies have shown that H2 can treat many diseases associated with oxidative stress, including cardiovascular disease. Currently, the main mechanisms of H2 action are considered to be its regulation of signal transduction, alterations in gene expression, and its selective •OH scavenging, although controversial and requiring further analysis of its biological significance. However, the main target of molecular hydrogen remains elusive, but may involve excitation principles. The main advantages of using H2 are its ease of penetration of all biological membranes, a wide range of routes of administration, and few or no significant side effects reported. Therefore, H2 may represent a new therapeutic strategy to alleviate oxidative stress and its pathological consequences.
However, more research is needed to determine the optimal method of administration, dosage and frequency, as well as the actual clinical implications of using H2 and the potential risks/pitfalls associated with its administration.
References
DOI: 10.3390
Published on: 24/06/2016
Тайлър У. ЛеБарон , Бранислав Кура , Барбора Калочайова , Нарцис Трибулова , и Ян Слезак
A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600250/
Morris Karmazyn, Academic EditorAbstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Redox dysregulation and inflammatory dysregulation occur and lead to cellular abnormalities and pathological conditions leading to cardiovascular disease. Despite years of intensive research, there is still no safe and effective way to prevent and treat it. Molecular hydrogen has recently been studied in preclinical and clinical studies in various diseases associated with oxidative and inflammatory stress, such as primarily administered by inhalation, drinking hydrogen-rich water, or injecting hydrogen-rich saline. It favorably regulates signal transduction and gene expression, thereby inhibiting pro-inflammatory cytokines, excess ROS production, and activation of the antioxidant transcription factor Nrf2. Although H2 appears to be an important biomolecule with antioxidant, anti-inflammatory and anti-apoptotic effects, its exact mechanism of action remains elusive. There are no reports of clinical toxicity; however, some data suggest that H2 has mild stimulant effects that may mediate some of its benefits. Mechanistic data combined with preclinical and clinical studies suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other diseases.
Conclusions
Excessive free radical production is a mediator of many cardiovascular diseases, such as ischemia/reperfusion injury, including those associated with graft storage during heart transplantation, and radiation-induced heart disease. To prevent or at least mitigate the development of oxidative stress, new approaches must be developed to effectively and safely reduce the pathological consequences of excess ROS levels.
Studies have shown that H2 can treat many diseases associated with oxidative stress, including cardiovascular disease. Currently, the main mechanisms of H2 action are considered to be its regulation of signal transduction, alterations in gene expression, and its selective •OH scavenging, although controversial and requiring further analysis of its biological significance. However, the main target of molecular hydrogen remains elusive, but may involve excitation principles. The main advantages of using H2 are its ease of penetration of all biological membranes, a wide range of routes of administration, and few or no significant side effects reported. Therefore, H2 may represent a new therapeutic strategy to alleviate oxidative stress and its pathological consequences.
However, more research is needed to determine the optimal method of administration, dosage and frequency, as well as the actual clinical implications of using H2 and the potential risks/pitfalls associated with its administration.
References
1. Slezak J., Kura B., Babal P., Barancik M., Ferko M., Frimmel K., Kalocayova B., Kukreja R.C., Lazou A., Mezesova L., et al. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can. J. Physiol. Pharmacol. 2017;95:1190–1203. doi: 10.1139/cjpp-2017-0121. [PubMed] [CrossRef] [Google Scholar]2. Eurostat. [(accessed on 14 August 2016)]; Available online: https://ec.europa.eu/3. Kura B., Babal P., Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can. J. Physiol. Pharmacol. 2017;95:1236–1244. doi: 10.1139/cjpp-2016-0741. [PubMed] [CrossRef] [Google Scholar]4. Slezak J., Kura B., Ravingerová T., Tribulova N., Okruhlicova L., Barancik M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can. J. Physiol. Pharmacol. 2015;93:737–753. doi: 10.1139/cjpp-2015-0006. [PubMed] [CrossRef] [Google Scholar]5. Stewart J.R., Fajardo L.F. Radiation-induced heart disease: An update. Prog. Cardiovasc. Dis. 1984;27:173–194. doi: 10.1016/0033-0620(84)90003-3. [PubMed] [CrossRef] [Google Scholar]6. Gillani S., Cao J., Suzuki T., Hak D.J. The effect of ischemia reperfusion injury on skeletal muscle. Injury. 2012;43:670–675. doi: 10.1016/j.injury.2011.03.008. [PubMed] [CrossRef] [Google Scholar]7. Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014;144:1–11. doi: 10.1016/j.pharmthera.2014.04.006. [PubMed] [CrossRef] [Google Scholar]8. Kura B., Bagchi A.K., Singal P.K., Barancik M., LeBaron T.W., Valachova K., Šoltés L., Slezák J. Molecular hydrogen: Potential in mitigating oxidative-stress-induced radiation injury. Can. J. Physiol. Pharmacol. 2019;97:287–292. doi: 10.1139/cjpp-2018-0604. [PubMed] [CrossRef] [Google Scholar]9. Slezák J., Kura B., Frimmel K., Zálešák M., Ravingerová T., Viczenczová C., Okruhlicová Ľ., Tribulová N. Preventive and therapeutic application of molecular hydrogen in situations with excessive production of free radicals. Physiol. Res. 2016;65(Suppl. 1):S11–S28. [PubMed] [Google Scholar]10. Ichihara M., Sobue S., Ito M., Ito M., Hirayama M., Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen-Comprehensive review of 321 original articles. Med. Gas Res. 2015;5:1–21. doi: 10.1186/s13618-015-0035-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]11. Ohta S. Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications. Curr. Pharm. Des. 2011;17:2241–2252. doi: 10.2174/138161211797052664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]12. Ďuračková Z. Some current insights into oxidative stress. Physiol. Res. 2010;8408:459–469. [PubMed] [Google Scholar]13. Moris D., Spartalis M., Spartalis E., Karachaliou G.-S., Karaolanis G.I., Tsourouflis G., Tsilimigras D.I., Tzatzaki E., Theocharis S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med. 2017;5:326. doi: 10.21037/atm.2017.06.27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]14. Sato Y., Kajiyama S., Amano A., Kondo Y., Sasaki T., Handa S., Takahashi R., Fukui M., Hasegawa G., Nakamura N., et al. Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem. Biophys. Res. Commun. 2008;375:346–350. doi: 10.1016/j.bbrc.2008.08.020. [PubMed] [CrossRef] [Google Scholar]15. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 1999;57:231–245. doi: 10.1016/S0006-2952(98)00227-5. [PubMed] [CrossRef] [Google Scholar]16. Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer. 2016;16:20–33. doi: 10.1038/nrc.2015.2. [PubMed] [CrossRef] [Google Scholar]17. Zhang G., Miura Y., Yagasaki K. Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Lett. 2000;159:169–173. doi: 10.1016/S0304-3835(00)00545-0. [PubMed] [CrossRef] [Google Scholar]18. Fridovich I. The biology of oxygen radicals. Science. 1978;201:875–880. doi: 10.1126/science.210504. [PubMed] [CrossRef] [Google Scholar]19. Endo J., Sano M., Katayama T., Hishiki T., Shinmura K., Morizane S., Matsuhashi T., Katsumata Y., Zhang Y., Ito H., et al. Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ. Res. 2009;105:1118–1127. doi: 10.1161/CIRCRESAHA.109.206607. [PubMed] [CrossRef] [Google Scholar]20. Jazwa A., Cuadrado A. Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Curr. Drug Targets. 2010;11:1517–1531. doi: 10.2174/1389450111009011517. [PubMed] [CrossRef] [Google Scholar]21. Hakim J. Reactive Oxygen Species and Inflammation. Comptes Rendus des séances la Soc. Biol. ses Fil. 1993;187:286–295. [PubMed] [Google Scholar]22. Poderoso J.J., Carreras M.C., Lisdero C., Riobó N., Schöpfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 1996;328:85–92. doi: 10.1006/abbi.1996.0146. [PubMed] [CrossRef] [Google Scholar]23. Thomas D.D., Ridnour L.A., Isenberg J.S., Flores-Santana W., Switzer C.H., Donzelli S., Hussain P., Vecoli C., Paolocci N., Ambs S., et al. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic. Biol. Med. 2008;45:18–31. doi: 10.1016/j.freeradbiomed.2008.03.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]24. Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011;194:7–15. doi: 10.1083/jcb.201102095. [PMC free article] [PubMed] [CrossRef] [Google Scholar]25. Qian L., Cao F., Cui J., Huang Y., Zhou X., Liu S., Cai J. Radioprotective effect of hydrogen in cultured cells and mice. Free Radic. Res. 2010;44:275–282. doi: 10.3109/10715760903468758. [PubMed] [CrossRef] [Google Scholar]26. Kirsch D.G., Santiago P.M., Di Tomaso E., Sullivan J.M., Hou W.S., Dayton T., Jeffords L.B., Sodha P., Mercer K.L., Cohen R., et al. P53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science. 2010;327:593–596. doi: 10.1126/science.1166202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]27. Ward J.F. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988;35:95–125. [PubMed] [Google Scholar]28. Chuai Y., Qian L., Sun X., Cai J. Molecular hydrogen and radiation protection. Free Radic. Res. 2012;46:1061–1067. doi: 10.3109/10715762.2012.689429. [PubMed] [CrossRef] [Google Scholar]29. Kura B., Yin C., Frimmel K., Krizak J., Okruhlicova L., Kukreja R.C., Slezak J. Changes of microRNA-1, -15b and -21 levels in irradiated rat hearts after treatment with potentially radioprotective drugs. Physiol. Res. 2016;65(Suppl. 1):S129–S137. [PubMed] [Google Scholar]30. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2X -deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res. 1997;387:147–163. doi: 10.1016/S1383-5742(97)00035-5. [PubMed] [CrossRef] [Google Scholar]31. Floyd R.A. Tine role off 8-hydroxyguanine to carcinogenesis. Carcinogenesis. 1990;11:1447–1450. doi: 10.1093/carcin/11.9.1447. [PubMed] [CrossRef] [Google Scholar]32. Bansal D., Bhalla A., Bhasin D., Pandhi P., Sharma N., Rana S., Malhotra S. Safety and efficacy of vitamin-based antioxidant therapy in patients with severe acute pancreatitis: A randomized controlled trial. Saudi J. Gastroenterol. 2011;17:174–179. [PMC free article] [PubMed] [Google Scholar]33. Fan X. Ionizing radiation induces formation of malondialdehyde, formaldehyde, and acetaldehyde from carbohydrates and organic acid. J. Agric. Food Chem. 2003;51:5946–5949. doi: 10.1021/jf0344340. [PubMed] [CrossRef] [Google Scholar]34. Dubner D., Gisone P., Jaitovich I., Perez M. Free radicals production and estimation of oxidative stress related to γ irradiation. Biol. Trace Elem. Res. 1995;47:265–270. doi: 10.1007/BF02790126. [PubMed] [CrossRef] [Google Scholar]35. Verma S.P., Sonwalkar N. Structural Changes in Plasma Membranes Prepared from Irradiated Chinese Hamster V79 Cells as Revealed by Raman Spectroscopy. Radiat. Res. 1991;126:27–35. doi: 10.2307/3578167. [PubMed] [CrossRef] [Google Scholar]36. Giusti A.M., Raimondi M., Ravagnan G., Sapora O., Parasassi T. Human cell membrane oxidative damage induced by single and fractionated doses of ionizing radiation: A fluorescence spectroscopy study. Int. J. Radiat. Biol. 1998;74:595–605. doi: 10.1080/095530098141177. [PubMed] [CrossRef] [Google Scholar]37. Quarmby S., Hunter R.D., Kumar S. Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer Res. 2000;20:3375–3381. [PubMed] [Google Scholar]38. Stewart F.A., Hoving S., Russell N.S. Vascular damage as an underlying mechanism of cardiac and cerebral toxicity in irradiated cancer patients. Radiat. Res. 2010;174:865–869. doi: 10.1667/RR1862.1. [PubMed] [CrossRef] [Google Scholar]39. Te Poele J.A., Van Kleef E.M., Van Der Wal A.F., Dewit L.G.H., Stewart F.A. Radiation-induced glomerular thrombus formation and nephropathy are not prevented by the ADP receptor antagonist clopidogrel. Int. J. Radiat. Oncol. Biol. Phys. 2001;50:1332–1338. doi: 10.1016/S0360-3016(01)01617-0. [PubMed] [CrossRef] [Google Scholar]40. Wang J., Zheng H., Ou X., Fink L.M., Hauer-Jensen M. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: Possible link between endothelial dysfunction and chronic radiation fibrosis. Am. J. Pathol. 2002;160:2063–2072. doi: 10.1016/S0002-9440(10)61156-X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]41. Adams M.J., Hardenbergh P.H., Constine L.S., Lipshultz S.E. Radiation-associated cardiovascular disease. Crit. Rev. Oncol. Hematol. 2003;45:55–75. doi: 10.1016/S1040-8428(01)00227-X. [PubMed] [CrossRef] [Google Scholar]42. Stewart J.R., Fajardo L.F., Gillette S.M., Constine L.S. Radiation injury to the heart. Int. J. Radiat. Oncol. Biol. Phys. 1995;31:1205–1211. doi: 10.1016/0360-3016(94)00656-6. [PubMed] [CrossRef] [Google Scholar]43. Lee C.K.K., Aeppli D., Nierengarten M.E. The need for long-term surveillance for patients treated with curative radiotherapy for Hodgkin’s disease: University of Minnesota experience. Int. J. Radiat. Oncol. Biol. Phys. 2000;48:169–179. doi: 10.1016/S0360-3016(00)00647-7. [PubMed] [CrossRef] [Google Scholar]44. Cuomo J.R., Sharma G.K., Conger P.D., Weintraub N.L. Novel concepts in radiation-induced cardiovascular disease. World J. Cardiol. 2016;8:504–519. doi: 10.4330/wjc.v8.i9.504. [PMC free article] [PubMed] [CrossRef] [Google Scholar]45. Beyzadeoglu M., Oysul K., Dirican B., Arpaci F., Balkan A., Surenkok S., Pak Y. Effect of Dose-Rate and Lung Dose in Total Body Irradiation on Interstitial Pneumonitis after Bone Marrow Transplantation. Tohoku J. Exp. Med. 2004;202:255–263. doi: 10.1620/tjem.202.255. [PubMed] [CrossRef] [Google Scholar]46. Sampath S., Schultheiss T.E., Wong J. Dose response and factors related to interstitial pneumonitis after bone marrow transplant. Int. J. Radiat. Oncol. Biol. Phys. 2005;63:876–884. doi: 10.1016/j.ijrobp.2005.02.032. [PubMed] [CrossRef] [Google Scholar]47. Qian L., Shen J., Chuai Y., Cai J. Hydrogen as a new class of radioprotective agent. Int. J. Biol. Sci. 2013;9:887–894. doi: 10.7150/ijbs.7220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]48. Vijayalaxmi, Reiter R.J., Tan D.X., Herman T.S., Thomas C.R. Melatonin as a radioprotective agent: A review. Int. J. Radiat. Oncol. Biol. Phys. 2004;59:639–653. doi: 10.1016/j.ijrobp.2004.02.006. [PubMed] [CrossRef] [Google Scholar]49. Aisin J.R.M. Bacq and A lexander Aw ard Lecture Chem ical radioprotection: Past, present and future prospects. Int. J. Radiat. Biol. 1998;73:443–450. [PubMed] [Google Scholar]50. Citrin D., Cotrim A.P., Hyodo F., Baum B.J., Krishna M.C., Mitchell J.B. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury. Oncologist. 2010;15:360–371. doi: 10.1634/theoncologist.2009-S104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]51. Noda M., Fujita K., Lee C.-H., Yoshioka T. The Principle and the Potential Approach to ROS-dependent Cytotoxicity by Non-pharmaceutical Therapies: Optimal Use of Medical Gases with Antioxidant Properties. Curr. Pharm. Des. 2011;17:2253–2263. doi: 10.2174/138161211797052600. [PubMed] [CrossRef] [Google Scholar]52. Su F., Zhao L., Zhang S., Wang J., Chen N., Gong Q., Tang J., Wang H., Yao J., Wang Q., et al. Cardioprotection by PI3K-mediated signaling is required for anti-arrhythmia and myocardial repair in response to ischemic preconditioning in infarcted pig hearts. Lab. Investig. 2015;95:860–871. doi: 10.1038/labinvest.2015.64. [PubMed] [CrossRef] [Google Scholar]53. Smyth J.W., Hong T.-T., Gao D., Vogan J.M., Jensen B.C., Fong T.S., Simpson P.C., Stainier D.Y.R., Chi N.C., Shaw R.M. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J. Clin. Invest. 2010;120:266–279. doi: 10.1172/JCI39740. [PMC free article] [PubMed] [CrossRef] [Google Scholar]54. Egan Benova T., Szeiffova Bacova B., Viczenczova C., Diez E., Barancik M., Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol. Res. 2016;65(Suppl. 1):S29–S42. [PubMed] [Google Scholar]55. Tribulova N., Szeiffova Bacova B., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. [PubMed] [CrossRef] [Google Scholar]56. Viczenczova C., Kura B., Benova T.E., Yin C., Kukreja R.C., Slezak J., Tribulova N., Bacova B.S. Irradiation-induced cardiac connexin-43 and miR-21 responses are hampered by treatment with atorvastatin and aspirin. Int. J. Mol. Sci. 2018;19:1–10. doi: 10.3390/ijms19041128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]57. Qiang B., Toma J., Fujii H., Osherov A.B., Nili N., Sparkes J.D., Fefer P., Samuel M., Butany J., Leong-Poi H., et al. Statin therapy prevents expansive remodeling in venous bypass grafts. Atherosclerosis. 2012;223:106–113. doi: 10.1016/j.atherosclerosis.2012.03.013. [PubMed] [CrossRef] [Google Scholar]58. Werner-Wasik M. Future development of amifostine as a radioprotectant. Semin. Oncol. 1999;26:129–134. [PubMed] [Google Scholar]59. Genvresse I., Lange C., Schanz J., Schwelgert M., Harder H., Possinger K., Späth-Schwalbe E. Tolerability of the cytoprotective agent amifostine in elderly patients receiving chemotherapy: A comparative study. Anticancer. Drugs. 2001;12:345–349. doi: 10.1097/00001813-200104000-00007. [PubMed] [CrossRef] [Google Scholar]60. Turer A.T., Hill J.A. Pathogenesis of Myocardial Ischemia-Reperfusion Injury and Rationale for Therapy. Am. J. Cardiol. 2010;37:761–771. doi: 10.1016/j.amjcard.2010.03.032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]61. Kucharská J., Gvozdjáková A., Kura B., Rausová Z., Slezák J. Effect of molecular hydrogen on coenzyme Q in plasma, myocardial tissue and mitochondria of rats. J. Nutr. Heal. Food Eng. 2018;8:362–364. [Google Scholar]62. Xia Y., Zweier J.L. Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J. Biol. Chem. 1995;270:18797–18803. doi: 10.1074/jbc.270.32.18797. [PubMed] [CrossRef] [Google Scholar]63. Zorov D.B., Filburn C.R., Klotz L.-O., Zweier J.L., Sollott S.J. Reactive Oxygen Species (ROS)-induced ROS Release: A New Phenomenon Accompanying Induction of the Mitochondrial Permeability Transition in Cardiac Myocytes. J. Exp. Med. Bull. 2000;192:1001–1014. doi: 10.1084/jem.192.7.1001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]64. Zhang Y., Tan S., Xu J., Wang T. Hydrogen Therapy in Cardiovascular and Metabolic Diseases: From Bench to Bedside. Cell. Physiol. Biochem. 2018;47:1–10. doi: 10.1159/000489737. [PubMed] [CrossRef] [Google Scholar]65. Burchfield J.S., Xie M., Hill J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation. 2013;128:388–400. doi: 10.1161/CIRCULATIONAHA.113.001878. [PMC free article] [PubMed] [CrossRef] [Google Scholar]66. Pedram A., Razandi M., O’Mahony F., Lubahn D., Levin E.R. Estrogen Receptor-β Prevents Cardiac Fibrosis. Mol. Endocrinol. 2010;24:2152–2165. doi: 10.1210/me.2010-0154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]67. Zhang Y., Li H. Reprogramming Interferon Regulatory Factor Signaling in Cardiometabolic Diseases. Physiology. 2017;32:210–223. doi: 10.1152/physiol.00038.2016. [PubMed] [CrossRef] [Google Scholar]68. Keeley E.C., Boura J.A., Grines C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet. 2003;361:13–20. doi: 10.1016/S0140-6736(03)12113-7. [PubMed] [CrossRef] [Google Scholar]69. Braunwald E., Kloner R.A. Myocardial reperfusion: A double-edged sword? J. Clin. Invest. 1985;76:1713–1719. doi: 10.1172/JCI112160. [PMC free article] [PubMed] [CrossRef] [Google Scholar]70. Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: United at reperfusion. Pharmacol. Ther. 2007;116:173–191. doi: 10.1016/j.pharmthera.2007.06.005. [PubMed] [CrossRef] [Google Scholar]71. Loke K.E., McConnell P.I., Tuzman J.M., Shesely E.G., Smith C.J., Stackpole C.J., Thompson C.I., Kaley G., Wolin M.S., Hintze T.H. Endogenous Endothelial Nitric Oxide Synthase–Derived Nitric Oxide Is a Physiological Regulator of Myocardial Oxygen Consumption. Circ. Res. 1999;84:840–845. doi: 10.1161/01.RES.84.7.840. [PubMed] [CrossRef] [Google Scholar]72. Radomski M.W., Palmer R.M.J., Moncada S. Endogenous Nitric Oxide Inhibits Human Platelet Adhesion To Vascular Endothelium. Lancet. 1987;330:1057–1058. doi: 10.1016/S0140-6736(87)91481-4. [PubMed] [CrossRef] [Google Scholar]73. Ma X.L., Weyrich A.S., Lefer D.J., Lefer A.M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ. Res. 1993;72:403–412. doi: 10.1161/01.RES.72.2.403. [PubMed] [CrossRef] [Google Scholar]74. Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. United States Am. 1990;87:1620–1624. doi: 10.1073/pnas.87.4.1620. [PMC free article] [PubMed] [CrossRef] [Google Scholar]75. Wang P., Zweier J.L. Measurement of Nitric Oxide and Peroxynitrite Generation in the Postischemic Heart. J. Biol. Chem. 1996;271:29223–29230. doi: 10.1074/jbc.271.46.29223. [PubMed] [CrossRef] [Google Scholar]76. Shi S., Xue F. Current Antioxidant Treatments in Organ Transplantation. Oxid. Med. Cell. Longev. 2016;2016:1–9. doi: 10.1155/2016/8678510. [PMC free article] [PubMed] [CrossRef] [Google Scholar]77. Panieri E., Santoro M.M. ROS signaling and redox biology in endothelial cells. Cell. Mol. Life Sci. 2015;72:3281–3303. doi: 10.1007/s00018-015-1928-9. [PubMed] [CrossRef] [Google Scholar]78. León J., Acuña-Castroviejo D., Escames G., Tan D.X., Reiter R.J. Melatonin mitigates mitochondrial malfunction. J. Pineal. Res. 2005;38:1–9. [PubMed] [Google Scholar]79. Koh P.O. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J. Vet. Med. Sci. 2008;70:747–750. doi: 10.1292/jvms.70.747. [PubMed] [CrossRef] [Google Scholar]80. Ahmad A., Sattar M.Z.A., Rathore H.A., Hussain A.I., Khan S.A., Fatima T., Afzal S., Abdullah N.A., Johns E.J. Antioxidant activity and free radical scavenging capacity of L-arginine and NaHS: A comparative in vitro study. Acta Pol. Pharm. Drug Res. 2015;72:245–252. [PubMed] [Google Scholar]81. Lemasters J.J., Qian T., He L., Kim J.-S., Elmore S.P., Cascio W.E., Brenner D.A. Role of Mitochondrial Inner Membrane Permeabilization in Necrotic Cell Death, Apoptosis, and Autophagy. Antioxid. Redox Signal. 2002;4:769–781. doi: 10.1089/152308602760598918. [PubMed] [CrossRef] [Google Scholar]82. Zaoualí M.A., Reiter R.J., Padrissa-Altés S., Boncompagni E., García J.J., Ben Abnennebi H., Freitas I., García-Gil F.A., Rosello-Catafau J. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J. Pineal Res. 2011;50:213–221. doi: 10.1111/j.1600-079X.2010.00831.x. [PubMed] [CrossRef] [Google Scholar]83. Abu-Amara M., Gurusamy K.S., Glantzounis G., Fuller B., Davidson B.R.R. Pharmacological interventions versus no pharmacological intervention for ischaemia reperfusion injury in liver resection surgery performed under vascular control. Cochrane Database Syst. Rev. 2009:CD008154. doi: 10.1002/14651858.CD007472.pub2. [PubMed] [CrossRef] [Google Scholar]84. Álvarez-Ayuso L., Gómez-Heras S.G., Jorge E., Guardiola J.M., Torralba A., Granado F., Millán I., Roda J.R., Calero P., Fernández-García H., et al. Vitamin E action on oxidative state, endothelial function and morphology in long-term myocardial preservation. Histol. Histopathol. 2010;25:577–587. [PubMed] [Google Scholar]85. Miller E.R., 3rd, Pastor-Barriuso R., Dalal D., Riemersma R.A., Appel L.J., Guallar E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality Background: Experimental models and observational studies. Ann. Intern. Med. 2005;142:37–46. doi: 10.7326/0003-4819-142-1-200501040-00110. [PubMed] [CrossRef] [Google Scholar]86. Schulz R. Intracellular Targets of Matrix Metalloproteinase-2 in Cardiac Disease: Rationale and Therapeutic Approaches. Annu. Rev. Pharmacol. Toxicol. 2007;47:211–242. doi: 10.1146/annurev.pharmtox.47.120505.105230. [PubMed] [CrossRef] [Google Scholar]87. Burwell L.S., Nadtochiy S.M., Tompkins A.J., Young S., Brookes P.S. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 2006;394:627–634. doi: 10.1042/BJ20051435. [PMC free article] [PubMed] [CrossRef] [Google Scholar]88. Gladwin M.T., Schechter A.N., Kim-Shapiro D.B., Patel R.P., Hogg N., Shiva S., Cannon R.O., Kelm M., Wink D.A., Espey M.G., et al. The Emerging Biology of the Nitrite Anion. Nat. Chem. Biol. 2005;1:308–314. doi: 10.1038/nchembio1105-308. [PubMed] [CrossRef] [Google Scholar]89. Downey J.M., Cohen M.V. A really radical observation. A comment on Penna et al. in Basic Res Cardiol (2006) 101:180-189. Basic Res. Cardiol. 2006;101:190–191. doi: 10.1007/s00395-006-0586-3. [PubMed] [CrossRef] [Google Scholar]90. Wang R. Gasotransmitters: Growing pains and joys. Trends Biochem. Sci. 2014;39:227–232. doi: 10.1016/j.tibs.2014.03.003. [PubMed] [CrossRef] [Google Scholar]91. Dong B.M., Abano J.B., Egan T.M. Nitric oxide ventilation of rat lungs from non-heart-beating donors improves posttransplant function. Am. J. Transplant. 2009;9:2707–2715. doi: 10.1111/j.1600-6143.2009.02840.x. [PubMed] [CrossRef] [Google Scholar]92. Ozaki K.S., Yoshida J., Ueki S., Pettigrew G.L., Ghonem N., Sico R.M., Lee L.Y., Shapiro R., Lakkis F.G., Pacheco-Silva A., et al. Carbon monoxide inhibits apoptosis during cold storage and protects kidney grafts donated after cardiac death. Transpl. Int. 2012;25:107–117. doi: 10.1111/j.1432-2277.2011.01363.x. [PubMed] [CrossRef] [Google Scholar]93. Nath K.A. Preservation of the kidney by carbon monoxide: A black swan phenomenon. Kidney Int. 2008;74:989–991. doi: 10.1038/ki.2008.423. [PMC free article] [PubMed] [CrossRef] [Google Scholar]94. Wu D., Wang J., Li H., Xue M., Ji A., Li Y. Role of hydrogen sulfide in ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2015;2015:186908. doi: 10.1155/2015/186908. [PMC free article] [PubMed] [CrossRef] [Google Scholar]95. Kajimura M., Nakanishi T., Takenouchi T., Morikawa T., Hishiki T., Yukutake Y., Suematsu M. Gas biology: Tiny molecules controlling metabolic systems. Respir. Physiol. Neurobiol. 2012;184:139–148. doi: 10.1016/j.resp.2012.03.016. [PubMed] [CrossRef] [Google Scholar]96. Iida A., Nosaka N., Yumoto T., Knaup E., Naito H., Nishiyama C., Yamakawa Y., Tsukahara K., Terado M., Sato K., et al. The clinical application of hydrogen as a medical treatment. Acta Med. Okayama. 2016;70:331–338. [PubMed] [Google Scholar]97. Abraini J.H., Gardette-Chauffour M.C., Martinez E., Rostain J.C., Lemaire C. Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen-helium-oxygen mixture. J. Appl. Physiol. 1994;76:1113–1118. doi: 10.1152/jappl.1994.76.3.1113. [PubMed] [CrossRef] [Google Scholar]98. Dole M., Wilson F.R., Fife W.P. Hyperbaric Hydrogen Therapy: A possible Treatment for Cancer. Science. 1975;190:152–154. doi: 10.1126/science.1166304. [PubMed] [CrossRef] [Google Scholar]99. Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., Katsura K.I., Katayama Y., Asoh S., Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007;13:688–694. doi: 10.1038/nm1577. [PubMed] [CrossRef] [Google Scholar]100. Li Q., Yu P., Zeng Q., Luo B., Cai S., Hui K., Yu G., Zhu C., Chen X., Duan M., et al. Neuroprotective Effect of Hydrogen-Rich Saline in Global Cerebral Ischemia/Reperfusion Rats: Up-Regulated Tregs and Down-Regulated miR-21, miR-210 and NF-κB Expression. Neurochem. Res. 2016;41:2655–2665. doi: 10.1007/s11064-016-1978-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]101. Suzuki Y., Sano M., Hayashida K., Ohsawa I., Ohta S., Fukuda K. Are the effects of α-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett. 2009;583:2157–2159. doi: 10.1016/j.febslet.2009.05.052. [PubMed] [CrossRef] [Google Scholar]102. Tamasawa A., Mochizuki K., Hariya N., Saito M., Ishida H., Doguchi S., Yanagiya S., Osonoi T. Hydrogen gas production is associated with reduced interleukin-1β mRNA in peripheral blood after a single dose of acarbose in Japanese type 2 diabetic patients. Eur. J. Pharmacol. 2015;762:96–101. doi: 10.1016/j.ejphar.2015.04.051. [PubMed] [CrossRef] [Google Scholar]103. Oharazawa H., Igarashi T., Yokota T., Fujii H., Suzuki H., Machide M., Takahashi H., Ohta S., Ohsawa I. Protection of the retina by rapid diffusion of hydrogen: Administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Investig. Ophthalmol. Vis. Sci. 2010;51:487–492. doi: 10.1167/iovs.09-4089. [PubMed] [CrossRef] [Google Scholar]104. Hayashida K., Sano M., Ohsawa I., Shinmura K., Tamaki K., Kimura K., Endo J., Katayama T., Kawamura A., Kohsaka S., et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 2008;373:30–35. doi: 10.1016/j.bbrc.2008.05.165. [PubMed] [CrossRef] [Google Scholar]105. Zhang Y., Xu J., Long Z., Wang C., Wang L., Sun P., Li P., Wang T. Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways. Front. Pharmacol. 2016;7:1–12. doi: 10.3389/fphar.2016.00392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]106. Cardinal J.S., Zhan J., Wang Y., Sugimoto R., Tsung A., McCurry K.R., Billiar T.R., Nakao A. Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney Int. 2010;77:101–109. doi: 10.1038/ki.2009.421. [PubMed] [CrossRef] [Google Scholar]107. LeBaron T.W., Larson A.J., Ohta S., Mikami T., Barlow J., Bulloch J., DeBeliso M. Acute Supplementation with Molecular Hydrogen Benefits Submaximal Exercise Indices. Randomized, Double-Blinded, Placebo-Controlled Crossover Pilot Study. J. Lifestyle Med. 2019;9:36–43. doi: 10.15280/jlm.2019.9.1.36. [PMC free article] [PubMed] [CrossRef] [Google Scholar]108. LeBaron T.W., Laher I., Kura B., Slezak J. Hydrogen gas: From clinical medicine to an emerging ergogenic molecule for sports athletes. Can. J. Physiol. Pharmacol. 2019 doi: 10.1139/cjpp-2019-0067. [Epub ahead of print] [PubMed] [CrossRef] [Google Scholar]109. Ito M., Hirayama M., Yamai K., Goto S., Ito M., Ichihara M., Ohno K. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med. Gas Res. 2012;2:15. doi: 10.1186/2045-9912-2-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]110. Hirayama M., Ito M., Minato T., Yoritaka A., LeBaron T., Ohno K. Inhalation of hydrogen gas elevates urinary 8-hydroxy-2′-deoxyguanine in Parkinson’s disease. Med. Gas Res. 2018;8:144–149. [PMC free article] [PubMed] [Google Scholar]111. Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim. Biophys. Acta Gen. Subj. 2012;1820:586–594. doi: 10.1016/j.bbagen.2011.05.006. [PubMed] [CrossRef] [Google Scholar]112. Ono H., Nishijima Y., Adachi N., Sakamoto M., Kudo Y., Kaneko K., Nakao A., Imaoka T. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med. Gas Res. 2012;2:21. doi: 10.1186/2045-9912-2-21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]113. Huang C.S., Kawamura T., Toyoda Y., Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic. Res. 2010;44:971–982. doi: 10.3109/10715762.2010.500328. [PubMed] [CrossRef] [Google Scholar]114. Yu J., Yu Q., Liu Y., Zhang R., Xue L. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells. PLoS ONE. 2017;12:1–12. doi: 10.1371/journal.pone.0173645. [PMC free article] [PubMed] [CrossRef] [Google Scholar]115. Gao Q., Song H., Wang X.T., Liang Y., Xi Y.J., Gao Y., Guo Q.J., Lebaron T., Luo Y.X., Li S.C., et al. Molecular hydrogen increases resilience to stress in mice. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-10362-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]116. Pacher P., Beckman J.S., Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]117. Hanaoka T., Kamimura N., Yokota T., Takai S., Ohta S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med. Gas Res. 2011;1:18. doi: 10.1186/2045-9912-1-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]118. Huang L. Molecular hydrogen: A therapeutic antioxidant and beyond. Med. Gas Res. 2016;6:219–222. doi: 10.4103/2045-9912.196904. [PMC free article] [PubMed] [CrossRef] [Google Scholar]119. Hood E., Simone E., Wattamwar P., Dziubla T., Muzykantov V. Nanocarriers for vascular delivery of antioxidants. Nanomedicine. 2011;6:1257–1272. doi: 10.2217/nnm.11.92. [PMC free article] [PubMed] [CrossRef] [Google Scholar]120. Penders J., Kissner R., Koppenol W.H. ONOOH does not react with H2: Potential beneficial effects of H2 as an antioxidant by selective reaction with hydroxyl radicals and peroxynitrite. Free Radic. Biol. Med. 2014;75:191–194. doi: 10.1016/j.freeradbiomed.2014.07.025. [PubMed] [CrossRef] [Google Scholar]121. Wood K.C., Gladwin M.T. The hydrogen highway to reperfusion therapy. Nat. Med. 2007;13:673–674. doi: 10.1038/nm0607-673. [PubMed] [CrossRef] [Google Scholar]122. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B., Tsang W. Critical Review of rate constants for reactions of hydrated electronsChemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane. J. Phys. Chem. Ref. Data. 1988;17:513. [Google Scholar]123. Dixon B.J., Tang J., Zhang J.H. The evolution of molecular hydrogen: A noteworthy potential therapy with clinical significance. Med. Gas Res. 2013;3:10. doi: 10.1186/2045-9912-3-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]124. Kamimura N., Nishimaki K., Ohsawa I., Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity. 2011;19:1396–1403. doi: 10.1038/oby.2011.6. [PubMed] [CrossRef] [Google Scholar]125. Kamimura N., Ichimiya H., Iuchi K., Ohta S. Molecular hydrogen stimulates the gene expression of transcriptional coactivator pgc-1α to enhance fatty acid metabolism. npj Aging Mech. Dis. 2016;2:16008. doi: 10.1038/npjamd.2016.8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]126. Ge L., Yang M., Yang N.-N., Yin X.-X., Song W.-G. Molecular hydrogen: A preventive and therapeutic medical gas for various diseases. Oncotarget. 2017;8:102653–102673. doi: 10.18632/oncotarget.21130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]127. Ohta S. Molecular hydrogen as a novel antioxidant: Overview of the advantages of hydrogen for medical applications. Methods Enzymol. 2015;555:289–317. [PubMed] [Google Scholar]128. Nguyen T., Nioi P., Pickett C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009;284:13291–13295. doi: 10.1074/jbc.R900010200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]129. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J.D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86. doi: 10.1101/gad.13.1.76. [PMC free article] [PubMed] [CrossRef] [Google Scholar]130. Baird L., Dinkova-Kostova A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol. 2011;85:241–272. doi: 10.1007/s00204-011-0674-5. [PubMed] [CrossRef] [Google Scholar]131. Raghunath A., Sundarraj K., Nagarajan R., Arfuso F., Bian J., Kumar A.P., Sethi G., Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. doi: 10.1016/j.redox.2018.05.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]132. Ma Q. Role of NRF2 in oxidative stress ans toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]133. Yuan J., Wang D., Liu Y., Chen X., Zhang H., Shen F., Liu X., Fu J. Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. J. Surg. Res. 2018;228:238–246. doi: 10.1016/j.jss.2018.03.024. [PubMed] [CrossRef] [Google Scholar]134. Jiang Y., Liu G., Zhang L., Cheng S., Luo C., Liao Y., Guo S. Therapeutic efficacy of hydrogen-rich saline alone and in combination with PI3K inhibitor in non-small cell lung cancer. Mol. Med. Rep. 2018;18:2182–2190. doi: 10.3892/mmr.2018.9168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]135. López-Bernardo E., Anedda A., Sánchez-Pérez P., Acosta-Iborra B., Cadenas S. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes. Free Radic. Biol. Med. 2015;88:427–438. doi: 10.1016/j.freeradbiomed.2015.03.032. [PubMed] [CrossRef] [Google Scholar]136. Bell K.F., Al-Mubarak B., Fowler J.H., Baxter P.S., Gupta K., Tsujita T., Chowdhry S., Patani R., Chandran S., Horsburgh K., et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc. Natl. Acad. Sci. 2011;108:E1–E2. doi: 10.1073/pnas.1015229108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]137. Jo S.-K., Ko G.J., Boo C.S., Cho W.Y., Kim H.K. Heat Preconditioning Attenuates Renal Injury in Ischemic ARF in Rats: Role of Heat-Shock Protein 70 on NF-κB–Mediated Inflammation and on Tubular Cell Injury. J. Am. Soc. Nephrol. 2006;17:3082–3092. doi: 10.1681/ASN.2005101077. [PubMed] [CrossRef] [Google Scholar]138. Zálešák M., Kura B., Graban J., Farkašová V., Slezák J., Ravingerová T. Molecular hydrogen potentiates beneficial anti-infarct effect of hypoxic postconditioning in isolated rat hearts: A novel cardioprotective intervention. Can. J. Physiol. Pharmacol. 2017;95:888–893. doi: 10.1139/cjpp-2016-0693. [PubMed] [CrossRef] [Google Scholar]139. Ristow M., Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis) Exp. Gerontol. 2010;45:410–418. doi: 10.1016/j.exger.2010.03.014. [PubMed] [CrossRef] [Google Scholar]140. Murakami Y., Ito M., Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE. 2017;12:1–14. doi: 10.1371/journal.pone.0176992. [PMC free article] [PubMed] [CrossRef] [Google Scholar]141. Kura B., Kalocayova B., LeBaron T.W., Frimmel K., Buday J., Surovy J., Slezak J. Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium. Mol. Cell. Biochem. 2019;0:1–12. doi: 10.1007/s11010-019-03512-z. [PubMed] [CrossRef] [Google Scholar]142. Zhang C.B., Tang Y.C., Xu X.J., Guo S.X., Wang H.Z. Hydrogen gas inhalation protects against liver ischemia/reperfusion injury by activating the NF-κB signaling pathway. Exp. Ther. Med. 2015;9:2114–2120. doi: 10.3892/etm.2015.2385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]143. Huang C.S., Kawamura T., Peng X., Tochigi N., Shigemura N., Billiar T.R., Nakao A., Toyoda Y. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation. Biochem. Biophys. Res. Commun. 2011;408:253–258. doi: 10.1016/j.bbrc.2011.04.008. [PubMed] [CrossRef] [Google Scholar]144. Nishiwaki H., Ito M., Negishi S., Sobue S., Ichihara M., Ohno K. Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: Meta-analyses of gene expression profiles. Free Radic. Res. 2018;52:434–445. doi: 10.1080/10715762.2018.1439166. [PubMed] [CrossRef] [Google Scholar]145. Sobue S., Inoue C., Hori F., Qiao S., Murate T., Ichihara M. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response. Biochem. Biophys. Res. Commun. 2017;493:318–324. doi: 10.1016/j.bbrc.2017.09.024. [PubMed] [CrossRef] [Google Scholar]146. Magenta A., Greco S., Gaetano C., Martelli F. Oxidative stress and microRNAs in vascular diseases. Int. J. Mol. Sci. 2013;14:17319–17346. doi: 10.3390/ijms140917319. [PMC free article] [PubMed] [CrossRef] [Google Scholar]147. Sun Q., Kang Z., Cai J., Liu W., Liu Y., Zhang J.H., Denoble P.J., Tao H., Sun X. Hydrogen-Rich Saline Protects Myocardium Against Ischemia/Reperfusion Injury in Rats. Exp. Biol. Med. 2009;234:1212–1219. doi: 10.3181/0812-RM-349. [PubMed] [CrossRef] [Google Scholar]148. Ikeda S., Kong S.W., Lu J., Bisping E., Zhang H., Allen P.D., Golub T.R., Pieske B., Pu W.T. Altered microRNA expression in human heart disease. Physiol. Genomics. 2007;31:367–373. doi: 10.1152/physiolgenomics.00144.2007. [PubMed] [CrossRef] [Google Scholar]149. Qin Z.X., Yu P., Qian D.H., Song M.B., Tan H., Yu Y., Li W., Wang H., Liu J., Wang Q., et al. Hydrogen-rich saline prevents neointima formation after carotid balloon injury by suppressing ROS and the TNF-α/NF-κB pathway. Atherosclerosis. 2012;220:343–350. doi: 10.1016/j.atherosclerosis.2011.11.002. [PubMed] [CrossRef] [Google Scholar]150. Lan J., Huang Z., Han J., Shao J., Huang C. Redox regulation of microRNAs in cancer. Cancer Lett. 2018;418:250–259. doi: 10.1016/j.canlet.2018.01.010. [PubMed] [CrossRef] [Google Scholar]151. Gong Y.-Y., Luo J.-Y., Wang L., Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid. Redox Signal. 2018;29:1092–1107. doi: 10.1089/ars.2017.7328. [PubMed] [CrossRef] [Google Scholar]152. Simone N.L., Soule B.P., Ly D., Saleh A.D., Savage J.E., DeGraff W., Cook J., Harris C.C., Gius D., Mitchell J.B. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE. 2009;4:1–7. doi: 10.1371/journal.pone.0006377. [PMC free article] [PubMed] [CrossRef] [Google Scholar]153. Zhu H., Fan G.C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc. Res. 2012;94:284–292. doi: 10.1093/cvr/cvr291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]154. Viczenczova C., Szeiffova Bacova B., Egan Benova T., Kura B., Yin C., Weismann P., Kukreja R., Slezak J., Tribulova N. Myocardial connexin-43 and PKC signalling are involved in adaptation of the heart to irradiation-induced injury: Implication of miR-1 and miR-21. Gen. Physiol. Biophys. 2016;35:215–222. doi: 10.4149/gpb_2015038. [PubMed] [CrossRef] [Google Scholar]155. Liu J., Zhu H., Yang X., Ge Y., Zhang C., Qin Q., Lu J., Zhan L., Cheng H., Sun X. MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumor Biol. 2014;35:3975–3979. doi: 10.1007/s13277-014-1623-8. [PubMed] [CrossRef] [Google Scholar]156. Chen Y., Jiang J., Miao H., Chen X., Sun X., Li Y. Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Int. J. Mol. Med. 2013;31:597–606. [PubMed] [Google Scholar]157. Riley P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 1994;65:27–33. doi: 10.1080/09553009414550041. [PubMed] [CrossRef] [Google Scholar]158. Zhao W., Robbins M. Inflammation and Chronic Oxidative Stress in Radiation-Induced Late Normal Tissue Injury: Therapeutic Implications. Curr. Med. Chem. 2009;16:130–143. doi: 10.2174/092986709787002790. [PubMed] [CrossRef] [Google Scholar]159. Yang Y., Zhu Y., Xi X. Anti-inflammatory and antitumor action of hydrogen via reactive oxygen species. Oncol. Lett. 2018;16:2771–2776. [PMC free article] [PubMed] [Google Scholar]160. Xie K., Yu Y., Pei Y., Hou L., Chen S., Xiong L., Wang G. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock. 2010;34:90–97. doi: 10.1097/SHK.0b013e3181cdc4ae. [PubMed] [CrossRef] [Google Scholar]161. Sun H., Chen L., Zhou W., Hu L., Li L., Tu Q., Chang Y., Liu Q., Sun X., Wu M., et al. The protective role of hydrogen-rich saline in experimental liver injury in mice. J. Hepatol. 2011;54:471–480. doi: 10.1016/j.jhep.2010.08.011. [PubMed] [CrossRef] [Google Scholar]162. Hattori Y., Kotani T., Tsuda H., Mano Y., Tu L., Li H., Hirako S., Ushida T., Imai K., Nakano T., et al. Maternal molecular hydrogen treatment attenuates lipopolysaccharide-induced rat fetal lung injury. Free Radic. Res. 2015;49:1026–1037. doi: 10.3109/10715762.2015.1038257. [PubMed] [CrossRef] [Google Scholar]163. Varga V., Németh J., Oláh O., Tóth-Szűki V., Kovács V., Remzső G., Domoki F. Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharmacol. Sin. 2018;39:1273–1283. doi: 10.1038/aps.2017.148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]164. Qian L., Li B., Cao F., Huang Y., Liu S., Cai J., Gao F. Hydrogen-rich PBS protects cultured human cells from ionizing radiation-induced cellular damage. Nucl. Technol. Radiat. Prot. 2010;25:23–29. doi: 10.2298/NTRP1001023Q. [CrossRef] [Google Scholar]165. Xiao H.W., Li Y., Luo D., Dong J.L., Zhou L.X., Zhao S.Y., Zheng Q.S., Wang H.C., Cui M., Fan S.J. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota. Exp. Mol. Med. 2018;50:e433. doi: 10.1038/emm.2017.246. [PMC free article] [PubMed] [CrossRef] [Google Scholar]166. Qian L., Cao F., Cui J., Wang Y., Huang Y., Chuai Y., Zaho L., Jiang H., Cai J. The Potential Cardioprotective Effects of Hydrogen in Irradiated Mice. J. Radiat. Res. 2010;51:741–747. doi: 10.1269/jrr.10093. [PubMed] [CrossRef] [Google Scholar]167. Qian L., Li B., Cai J., Gao F. The Hypothesis of an Effective Safe and Novel Radioprotective Agent Hydrogen-rich Solution La Hipótesis de una Solución rica en Hidrógeno como Agente Radioprotector Novedoso, Seguro y Efectivo. Am. J. Transplant. 2010;59:122–124. [Google Scholar]168. Mei K., Zhao S., Qian L., Li B., Ni J., Cai J. Hydrogen protects rats from dermatitis caused by local radiation. J. Dermatolog. Treat. 2014;25:182–188. doi: 10.3109/09546634.2012.762639. [PubMed] [CrossRef] [Google Scholar]169. Watanabe S., Fujita M., Ishihara M., Tachibana S., Yamamoto Y., Kaji T., Kawauchi T., Kanatani Y. Protective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats. J. Radiat. Res. 2014;55:1107–1113. doi: 10.1093/jrr/rru067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]170. Ramachandran A., Madesh M., Balasubramanian K.A. Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions. J. Gastroenterol. Hepatol. 2000;15:109–120. doi: 10.1046/j.1440-1746.2000.02059.x. [PubMed] [CrossRef] [Google Scholar]171. Kang K.M., Kang Y.N., Choi I.B., Gu Y., Kawamura T., Toyoda Y., Nakao A. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med. Gas Res. 2011;1:11. doi: 10.1186/2045-9912-1-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]172. Conklin K.A. Dietary Antioxidants During Cancer Chemotherapy: Impact on Chemotherapeutic Effectiveness and Development of Side Effects. Nutr. Cancer. 2000;37:1–18. doi: 10.1207/S15327914NC3701_1. [PubMed] [CrossRef] [Google Scholar]173. Kitamura A., Kobayashi S., Matsushita T., Fujinawa H., Murase K. Experimental verification of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using dynamic contrast-enhanced CT. Br. J. Radiol. 2010;83:509–514. doi: 10.1259/bjr/25604811. [PMC free article] [PubMed] [CrossRef] [Google Scholar]174. Shinbo T., Kokubo K., Sato Y., Hagiri S., Hataishi R., Hirose M., Kobayashi H. Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Circ. Physiol. 2013;305:H542–H550. doi: 10.1152/ajpheart.00844.2012. [PubMed] [CrossRef] [Google Scholar]175. Fukuda K.I., Asoh S., Ishikawa M., Yamamoto Y., Ohsawa I., Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem. Biophys. Res. Commun. 2007;361:670–674. doi: 10.1016/j.bbrc.2007.07.088. [PubMed] [CrossRef] [Google Scholar]176. Sakai K., Cho S., Shibata I., Yoshitomi O., Maekawa T., Sumikawa K. Inhalation of hydrogen gas protects against myocardial stunning and infarction in swine. Scand. Cardiovasc. J. 2012;46:183–189. doi: 10.3109/14017431.2012.659676. [PubMed] [CrossRef] [Google Scholar]177. Cole A.R., Perry D.A., Raza A., Nedder A.P., Pollack E., Regan W.L., van den Bosch S.J., Polizzotti B.D., Yang E., Davila D., et al. Perioperatively Inhaled Hydrogen Gas Diminishes Neurologic Injury Following Experimental Circulatory Arrest in Swine. JACC Basic to Transl. Sci. 2019;4:176–187. doi: 10.1016/j.jacbts.2018.11.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]178. Lefer D.J., Nakanishi K., Johnston W.E., Vinten-Johansen J. Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion in dogs. Circulation. 1993;88:2337–2350. doi: 10.1161/01.CIR.88.5.2337. [PubMed] [CrossRef] [Google Scholar]179. Wong P.S.Y., Eiserich J.P., Reddy S., Lopez C.L., Cross C.E., van der VlieT A. Inactivation of glutathione S-Transferases by nitric oxide-derived oxidants: Exploring a role for tyrosine nitration. Arch. Biochem. Biophys. 2001;394:216–228. doi: 10.1006/abbi.2001.2532. [PubMed] [CrossRef] [Google Scholar]180. Zhang Y., Sun Q., He B., Xiao J., Wang Z., Sun X. Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int. J. Cardiol. 2011;148:91–95. doi: 10.1016/j.ijcard.2010.08.058. [PubMed] [CrossRef] [Google Scholar]181. Javadov S., Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell. Physiol. Biochem. 2007;20:1–22. doi: 10.1159/000103747. [PubMed] [CrossRef] [Google Scholar]182. Jing L., Wang Y., Zhao X.M., Zhao B., Han J.J., Qin S.C., Sun X.J. Cardioprotective Effect of Hydrogen-rich Saline on Isoproterenol-induced Myocardial Infarction in Rats. Hear. Lung Circ. 2015;24:602–610. doi: 10.1016/j.hlc.2014.11.018. [PubMed] [CrossRef] [Google Scholar]183. Zhang Y., Long Z., Xu J., Tan S., Zhang N., Li A., Wang L., Wang T. Hydrogen inhibits isoproterenol-induced autophagy in cardiomyocytes in vitro and in vivo. Mol. Med. Rep. 2017;16:8253–8258. doi: 10.3892/mmr.2017.7601. [PubMed] [CrossRef] [Google Scholar]184. Gao Y., Yang H., Chi J., Xu Q., Zhao L., Yang W., Liu W., Yang W. Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy. Cell. Physiol. Biochem. 2017;43:1503–1514. doi: 10.1159/000481974. [PubMed] [CrossRef] [Google Scholar]185. Gao Y., Yang H., Fan Y., Li L., Fang J., Yang W. Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and Apoptosis. Mediators Inflamm. 2016;2016:3675910. doi: 10.1155/2016/1320365. [PMC free article] [PubMed] [CrossRef] [Google Scholar]186. Huo T.T., Zeng Y., Liu X.N., Sun L., Han H.Z., Chen H.G., Lu Z.H., Huang Y., Nie H., Dong H.L., et al. Hydrogen-rich saline improves survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation in Rats. Anesth. Analg. 2014;119:368–380. doi: 10.1213/ANE.0000000000000303. [PubMed] [CrossRef] [Google Scholar]187. Hayashida K., Sano M., Kamimura N., Yokota T., Suzuki M., Maekawa Y., Kawamura A., Abe T., Ohta S., Fukuda K., et al. H(2) gas improves functional outcome after cardiac arrest to an extent comparable to therapeutic hypothermia in a rat model. J. Am. Heart Assoc. 2012;1:1–13. doi: 10.1161/JAHA.112.003459. [PMC free article] [PubMed] [CrossRef] [Google Scholar]188. Yu Y.S., Zheng H. Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol. Cell. Biochem. 2012;365:233–242. doi: 10.1007/s11010-012-1264-4. [PubMed] [CrossRef] [Google Scholar]189. Kato R., Nomura A., Sakamoto A., Yasuda Y., Amatani K., Nagai S., Sen Y., Ijiri Y., Okada Y., Yamaguchi T., et al. Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters. Am. J. Physiol. Circ. Physiol. 2014;307:H1626–H1633. doi: 10.1152/ajpheart.00228.2014. [PubMed] [CrossRef] [Google Scholar]190. Noda K., Shigemura N., Tanaka Y., Kawamura T., Hyun Lim S., Kokubo K., Billiar T.R., Bermudez C.A., Kobayashi H., Nakao A. A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J. Hear. Lung Transplant. 2013;32:241–250. doi: 10.1016/j.healun.2012.11.004. [PubMed] [CrossRef] [Google Scholar]191. Ohno K., Ito M., Ichihara M., Ito M. Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases. Oxid. Med. Cell. Longev. 2012;2012:1–11. doi: 10.1155/2012/353152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]192. Tan M., Sun X., Guo L., Su C., Sun X., Xu Z. Hydrogen as additive of HTK solution fortifies myocardial preservation in grafts with prolonged cold ischemia. Int. J. Cardiol. 2013;167:383–390. doi: 10.1016/j.ijcard.2011.12.109. [PubMed] [CrossRef] [Google Scholar]193. Noda K., Tanaka Y., Shigemura N., Kawamura T., Wang Y., Masutani K., Sun X., Toyoda Y., Bermudez C.A., Nakao A. Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl. Int. 2012;25:1213–1222. doi: 10.1111/j.1432-2277.2012.01542.x. [PubMed] [CrossRef] [Google Scholar]194. Nakao A., Kaczorowski D.J., Wang Y., Cardinal J.S., Buchholz B.M., Sugimoto R., Tobita K., Lee S., Toyoda Y., Billiar T.R., et al. Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both. J. Hear. Lung Transplant. 2010;29:544–553. doi: 10.1016/j.healun.2009.10.011. [PubMed] [CrossRef] [Google Scholar]195. Liu Y., Yang L., Tao K., Vizcaychipi M.P., Lloyd D.M., Sun X., Irwin M.G., Ma D., Yu W. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release. BMC Gastroenterol. 2014;14:1–9. doi: 10.1186/1471-230X-14-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]196. Bolli R., Becker L., Gross G., Mentzer R., Balshaw D., Lathrop D.A. Myocardial Protection at a Crossroads: The Need for Translation Into Clinical Therapy Roberto. Circ. Res. 2004;95:125–134. doi: 10.1161/01.RES.0000137171.97172.d7. [PubMed] [CrossRef] [Google Scholar]197. Katsumata Y., Sano F., Abe T., Tamura T., Fujisawa T., Shiraishi Y., Kohsaka S., Ueda I., Homma K., Suzuki M., et al. The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling After Percutaneous Coronary Intervention for ST-Elevated Myocardial Infarction ― First Pilot Study in Humans. Circ. J. 2017;81:940–947. doi: 10.1253/circj.CJ-17-0105. [PubMed] [CrossRef] [Google Scholar]
1. Slezak J., Kura B., Babal P., Barancik M., Ferko M., Frimmel K., Kalocayova B., Kukreja R.C., Lazou A., Mezesova L., et al. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can. J. Physiol. Pharmacol. 2017;95:1190–1203. doi: 10.1139/cjpp-2017-0121.
2. Eurostat. [(accessed on 14 August 2016)]; Available online: https://ec.europa.eu/
3. Kura B., Babal P., Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can. J. Physiol. Pharmacol. 2017;95:1236–1244. doi: 10.1139/cjpp-2016-0741.
4. Slezak J., Kura B., Ravingerová T., Tribulova N., Okruhlicova L., Barancik M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can. J. Physiol. Pharmacol. 2015;93:737–753. doi: 10.1139/cjpp-2015-0006.
5. Stewart J.R., Fajardo L.F. Radiation-induced heart disease: An update. Prog. Cardiovasc. Dis. 1984;27:173–194. doi: 10.1016/0033-0620(84)90003-3.
6. Gillani S., Cao J., Suzuki T., Hak D.J. The effect of ischemia reperfusion injury on skeletal muscle. Injury. 2012;43:670–675. doi: 10.1016/j.injury.2011.03.008.
7. Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014;144:1–11. doi: 10.1016/j.pharmthera.2014.04.006.
8. Kura B., Bagchi A.K., Singal P.K., Barancik M., LeBaron T.W., Valachova K., Šoltés L., Slezák J. Molecular hydrogen: Potential in mitigating oxidative-stress-induced radiation injury. Can. J. Physiol. Pharmacol. 2019;97:287–292. doi: 10.1139/cjpp-2018-0604.
9. Slezák J., Kura B., Frimmel K., Zálešák M., Ravingerová T., Viczenczová C., Okruhlicová Ľ., Tribulová N. Preventive and therapeutic application of molecular hydrogen in situations with excessive production of free radicals. Physiol. Res. 2016;65(Suppl. 1):S11–S28.
10. Ichihara M., Sobue S., Ito M., Ito M., Hirayama M., Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen-Comprehensive review of 321 original articles. Med. Gas Res. 2015;5:1–21. doi: 10.1186/s13618-015-0035-1.
11. Ohta S. Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications. Curr. Pharm. Des. 2011;17:2241–2252. doi: 10.2174/138161211797052664.
12. Ďuračková Z. Some current insights into oxidative stress. Physiol. Res. 2010;8408:459–469.
13. Moris D., Spartalis M., Spartalis E., Karachaliou G.-S., Karaolanis G.I., Tsourouflis G., Tsilimigras D.I., Tzatzaki E., Theocharis S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med. 2017;5:326. doi: 10.21037/atm.2017.06.27.
14. Sato Y., Kajiyama S., Amano A., Kondo Y., Sasaki T., Handa S., Takahashi R., Fukui M., Hasegawa G., Nakamura N., et al. Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem. Biophys. Res. Commun. 2008;375:346–350. doi: 10.1016/j.bbrc.2008.08.020.
15. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 1999;57:231–245. doi: 10.1016/S0006-2952(98)00227-5.
16. Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer. 2016;16:20–33. doi: 10.1038/nrc.2015.2.
17. Zhang G., Miura Y., Yagasaki K. Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Lett. 2000;159:169–173. doi: 10.1016/S0304-3835(00)00545-0.
18. Fridovich I. The biology of oxygen radicals. Science. 1978;201:875–880. doi: 10.1126/science.210504.
19. Endo J., Sano M., Katayama T., Hishiki T., Shinmura K., Morizane S., Matsuhashi T., Katsumata Y., Zhang Y., Ito H., et al. Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ. Res. 2009;105:1118–1127. doi: 10.1161/CIRCRESAHA.109.206607.
20. Jazwa A., Cuadrado A. Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Curr. Drug Targets. 2010;11:1517–1531. doi: 10.2174/1389450111009011517.
21. Hakim J. Reactive Oxygen Species and Inflammation. Comptes Rendus des séances la Soc. Biol. ses Fil. 1993;187:286–295.
22. Poderoso J.J., Carreras M.C., Lisdero C., Riobó N., Schöpfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 1996;328:85–92. doi: 10.1006/abbi.1996.0146.
23. Thomas D.D., Ridnour L.A., Isenberg J.S., Flores-Santana W., Switzer C.H., Donzelli S., Hussain P., Vecoli C., Paolocci N., Ambs S., et al. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic. Biol. Med. 2008;45:18–31. doi: 10.1016/j.freeradbiomed.2008.03.020.
24. Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011;194:7–15. doi: 10.1083/jcb.201102095.
25. Qian L., Cao F., Cui J., Huang Y., Zhou X., Liu S., Cai J. Radioprotective effect of hydrogen in cultured cells and mice. Free Radic. Res. 2010;44:275–282. doi: 10.3109/10715760903468758.
26. Kirsch D.G., Santiago P.M., Di Tomaso E., Sullivan J.M., Hou W.S., Dayton T., Jeffords L.B., Sodha P., Mercer K.L., Cohen R., et al. P53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science. 2010;327:593–596. doi: 10.1126/science.1166202.
27. Ward J.F. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988;35:95–125.
28. Chuai Y., Qian L., Sun X., Cai J. Molecular hydrogen and radiation protection. Free Radic. Res. 2012;46:1061–1067. doi: 10.3109/10715762.2012.689429.
29. Kura B., Yin C., Frimmel K., Krizak J., Okruhlicova L., Kukreja R.C., Slezak J. Changes of microRNA-1, -15b and -21 levels in irradiated rat hearts after treatment with potentially radioprotective drugs. Physiol. Res. 2016;65(Suppl. 1):S129–S137.
30. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2X -deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res. 1997;387:147–163. doi: 10.1016/S1383-5742(97)00035-5.
31. Floyd R.A. Tine role off 8-hydroxyguanine to carcinogenesis. Carcinogenesis. 1990;11:1447–1450. doi: 10.1093/carcin/11.9.1447.
32. Bansal D., Bhalla A., Bhasin D., Pandhi P., Sharma N., Rana S., Malhotra S. Safety and efficacy of vitamin-based antioxidant therapy in patients with severe acute pancreatitis: A randomized controlled trial. Saudi J. Gastroenterol. 2011;17:174–179.
33. Fan X. Ionizing radiation induces formation of malondialdehyde, formaldehyde, and acetaldehyde from carbohydrates and organic acid. J. Agric. Food Chem. 2003;51:5946–5949. doi: 10.1021/jf0344340.
34. Dubner D., Gisone P., Jaitovich I., Perez M. Free radicals production and estimation of oxidative stress related to γ irradiation. Biol. Trace Elem. Res. 1995;47:265–270. doi: 10.1007/BF02790126.
35. Verma S.P., Sonwalkar N. Structural Changes in Plasma Membranes Prepared from Irradiated Chinese Hamster V79 Cells as Revealed by Raman Spectroscopy. Radiat. Res. 1991;126:27–35. doi: 10.2307/3578167.
36. Giusti A.M., Raimondi M., Ravagnan G., Sapora O., Parasassi T. Human cell membrane oxidative damage induced by single and fractionated doses of ionizing radiation: A fluorescence spectroscopy study. Int. J. Radiat. Biol. 1998;74:595–605. doi: 10.1080/095530098141177.
37. Quarmby S., Hunter R.D., Kumar S. Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer Res. 2000;20:3375–3381.
38. Stewart F.A., Hoving S., Russell N.S. Vascular damage as an underlying mechanism of cardiac and cerebral toxicity in irradiated cancer patients. Radiat. Res. 2010;174:865–869. doi: 10.1667/RR1862.1.
39. Te Poele J.A., Van Kleef E.M., Van Der Wal A.F., Dewit L.G.H., Stewart F.A. Radiation-induced glomerular thrombus formation and nephropathy are not prevented by the ADP receptor antagonist clopidogrel. Int. J. Radiat. Oncol. Biol. Phys. 2001;50:1332–1338. doi: 10.1016/S0360-3016(01)01617-0.
40. Wang J., Zheng H., Ou X., Fink L.M., Hauer-Jensen M. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: Possible link between endothelial dysfunction and chronic radiation fibrosis. Am. J. Pathol. 2002;160:2063–2072. doi: 10.1016/S0002-9440(10)61156-X.
41. Adams M.J., Hardenbergh P.H., Constine L.S., Lipshultz S.E. Radiation-associated cardiovascular disease. Crit. Rev. Oncol. Hematol. 2003;45:55–75. doi: 10.1016/S1040-8428(01)00227-X.
42. Stewart J.R., Fajardo L.F., Gillette S.M., Constine L.S. Radiation injury to the heart. Int. J. Radiat. Oncol. Biol. Phys. 1995;31:1205–1211. doi: 10.1016/0360-3016(94)00656-6.
43. Lee C.K.K., Aeppli D., Nierengarten M.E. The need for long-term surveillance for patients treated with curative radiotherapy for Hodgkin’s disease: University of Minnesota experience. Int. J. Radiat. Oncol. Biol. Phys. 2000;48:169–179. doi: 10.1016/S0360-3016(00)00647-7.
44. Cuomo J.R., Sharma G.K., Conger P.D., Weintraub N.L. Novel concepts in radiation-induced cardiovascular disease. World J. Cardiol. 2016;8:504–519. doi: 10.4330/wjc.v8.i9.504.
45. Beyzadeoglu M., Oysul K., Dirican B., Arpaci F., Balkan A., Surenkok S., Pak Y. Effect of Dose-Rate and Lung Dose in Total Body Irradiation on Interstitial Pneumonitis after Bone Marrow Transplantation. Tohoku J. Exp. Med. 2004;202:255–263. doi: 10.1620/tjem.202.255.
46. Sampath S., Schultheiss T.E., Wong J. Dose response and factors related to interstitial pneumonitis after bone marrow transplant. Int. J. Radiat. Oncol. Biol. Phys. 2005;63:876–884. doi: 10.1016/j.ijrobp.2005.02.032.
47. Qian L., Shen J., Chuai Y., Cai J. Hydrogen as a new class of radioprotective agent. Int. J. Biol. Sci. 2013;9:887–894. doi: 10.7150/ijbs.7220.
48. Vijayalaxmi, Reiter R.J., Tan D.X., Herman T.S., Thomas C.R. Melatonin as a radioprotective agent: A review. Int. J. Radiat. Oncol. Biol. Phys. 2004;59:639–653. doi: 10.1016/j.ijrobp.2004.02.006.
49. Aisin J.R.M. Bacq and A lexander Aw ard Lecture Chem ical radioprotection: Past, present and future prospects. Int. J. Radiat. Biol. 1998;73:443–450.
50. Citrin D., Cotrim A.P., Hyodo F., Baum B.J., Krishna M.C., Mitchell J.B. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury. Oncologist. 2010;15:360–371. doi: 10.1634/theoncologist.2009-S104.
51. Noda M., Fujita K., Lee C.-H., Yoshioka T. The Principle and the Potential Approach to ROS-dependent Cytotoxicity by Non-pharmaceutical Therapies: Optimal Use of Medical Gases with Antioxidant Properties. Curr. Pharm. Des. 2011;17:2253–2263. doi: 10.2174/138161211797052600.
52. Su F., Zhao L., Zhang S., Wang J., Chen N., Gong Q., Tang J., Wang H., Yao J., Wang Q., et al. Cardioprotection by PI3K-mediated signaling is required for anti-arrhythmia and myocardial repair in response to ischemic preconditioning in infarcted pig hearts. Lab. Investig. 2015;95:860–871. doi: 10.1038/labinvest.2015.64.
53. Smyth J.W., Hong T.-T., Gao D., Vogan J.M., Jensen B.C., Fong T.S., Simpson P.C., Stainier D.Y.R., Chi N.C., Shaw R.M. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J. Clin. Invest. 2010;120:266–279. doi: 10.1172/JCI39740.
54. Egan Benova T., Szeiffova Bacova B., Viczenczova C., Diez E., Barancik M., Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol. Res. 2016;65(Suppl. 1):S29–S42.
55. Tribulova N., Szeiffova Bacova B., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006.
56. Viczenczova C., Kura B., Benova T.E., Yin C., Kukreja R.C., Slezak J., Tribulova N., Bacova B.S. Irradiation-induced cardiac connexin-43 and miR-21 responses are hampered by treatment with atorvastatin and aspirin. Int. J. Mol. Sci. 2018;19:1–10. doi: 10.3390/ijms19041128.
57. Qiang B., Toma J., Fujii H., Osherov A.B., Nili N., Sparkes J.D., Fefer P., Samuel M., Butany J., Leong-Poi H., et al. Statin therapy prevents expansive remodeling in venous bypass grafts. Atherosclerosis. 2012;223:106–113. doi: 10.1016/j.atherosclerosis.2012.03.013.
58. Werner-Wasik M. Future development of amifostine as a radioprotectant. Semin. Oncol. 1999;26:129–134.
59. Genvresse I., Lange C., Schanz J., Schwelgert M., Harder H., Possinger K., Späth-Schwalbe E. Tolerability of the cytoprotective agent amifostine in elderly patients receiving chemotherapy: A comparative study. Anticancer. Drugs. 2001;12:345–349. doi: 10.1097/00001813-200104000-00007.
60. Turer A.T., Hill J.A. Pathogenesis of Myocardial Ischemia-Reperfusion Injury and Rationale for Therapy. Am. J. Cardiol. 2010;37:761–771. doi: 10.1016/j.amjcard.2010.03.032.
61. Kucharská J., Gvozdjáková A., Kura B., Rausová Z., Slezák J. Effect of molecular hydrogen on coenzyme Q in plasma, myocardial tissue and mitochondria of rats. J. Nutr. Heal. Food Eng. 2018;8:362–364.
62. Xia Y., Zweier J.L. Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J. Biol. Chem. 1995;270:18797–18803. doi: 10.1074/jbc.270.32.18797.
63. Zorov D.B., Filburn C.R., Klotz L.-O., Zweier J.L., Sollott S.J. Reactive Oxygen Species (ROS)-induced ROS Release: A New Phenomenon Accompanying Induction of the Mitochondrial Permeability Transition in Cardiac Myocytes. J. Exp. Med. Bull. 2000;192:1001–1014. doi: 10.1084/jem.192.7.1001.
64. Zhang Y., Tan S., Xu J., Wang T. Hydrogen Therapy in Cardiovascular and Metabolic Diseases: From Bench to Bedside. Cell. Physiol. Biochem. 2018;47:1–10. doi: 10.1159/000489737.
65. Burchfield J.S., Xie M., Hill J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation. 2013;128:388–400. doi: 10.1161/CIRCULATIONAHA.113.001878.
66. Pedram A., Razandi M., O’Mahony F., Lubahn D., Levin E.R. Estrogen Receptor-β Prevents Cardiac Fibrosis. Mol. Endocrinol. 2010;24:2152–2165. doi: 10.1210/me.2010-0154.
67. Zhang Y., Li H. Reprogramming Interferon Regulatory Factor Signaling in Cardiometabolic Diseases. Physiology. 2017;32:210–223. doi: 10.1152/physiol.00038.2016.
68. Keeley E.C., Boura J.A., Grines C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet. 2003;361:13–20. doi: 10.1016/S0140-6736(03)12113-7.
69. Braunwald E., Kloner R.A. Myocardial reperfusion: A double-edged sword? J. Clin. Invest. 1985;76:1713–1719. doi: 10.1172/JCI112160.
70. Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: United at reperfusion. Pharmacol. Ther. 2007;116:173–191. doi: 10.1016/j.pharmthera.2007.06.005.
71. Loke K.E., McConnell P.I., Tuzman J.M., Shesely E.G., Smith C.J., Stackpole C.J., Thompson C.I., Kaley G., Wolin M.S., Hintze T.H. Endogenous Endothelial Nitric Oxide Synthase–Derived Nitric Oxide Is a Physiological Regulator of Myocardial Oxygen Consumption. Circ. Res. 1999;84:840–845. doi: 10.1161/01.RES.84.7.840.
72. Radomski M.W., Palmer R.M.J., Moncada S. Endogenous Nitric Oxide Inhibits Human Platelet Adhesion To Vascular Endothelium. Lancet. 1987;330:1057–1058. doi: 10.1016/S0140-6736(87)91481-4.
73. Ma X.L., Weyrich A.S., Lefer D.J., Lefer A.M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ. Res. 1993;72:403–412. doi: 10.1161/01.RES.72.2.403.
74. Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. United States Am. 1990;87:1620–1624. doi: 10.1073/pnas.87.4.1620.
75. Wang P., Zweier J.L. Measurement of Nitric Oxide and Peroxynitrite Generation in the Postischemic Heart. J. Biol. Chem. 1996;271:29223–29230. doi: 10.1074/jbc.271.46.29223.
76. Shi S., Xue F. Current Antioxidant Treatments in Organ Transplantation. Oxid. Med. Cell. Longev. 2016;2016:1–9. doi: 10.1155/2016/8678510.
77. Panieri E., Santoro M.M. ROS signaling and redox biology in endothelial cells. Cell. Mol. Life Sci. 2015;72:3281–3303. doi: 10.1007/s00018-015-1928-9.
78. León J., Acuña-Castroviejo D., Escames G., Tan D.X., Reiter R.J. Melatonin mitigates mitochondrial malfunction. J. Pineal. Res. 2005;38:1–9.
79. Koh P.O. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J. Vet. Med. Sci. 2008;70:747–750. doi: 10.1292/jvms.70.747.
80. Ahmad A., Sattar M.Z.A., Rathore H.A., Hussain A.I., Khan S.A., Fatima T., Afzal S., Abdullah N.A., Johns E.J. Antioxidant activity and free radical scavenging capacity of L-arginine and NaHS: A comparative in vitro study. Acta Pol. Pharm. Drug Res. 2015;72:245–252.
81. Lemasters J.J., Qian T., He L., Kim J.-S., Elmore S.P., Cascio W.E., Brenner D.A. Role of Mitochondrial Inner Membrane Permeabilization in Necrotic Cell Death, Apoptosis, and Autophagy. Antioxid. Redox Signal. 2002;4:769–781. doi: 10.1089/152308602760598918.
82. Zaoualí M.A., Reiter R.J., Padrissa-Altés S., Boncompagni E., García J.J., Ben Abnennebi H., Freitas I., García-Gil F.A., Rosello-Catafau J. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J. Pineal Res. 2011;50:213–221. doi: 10.1111/j.1600-079X.2010.00831.x.
83. Abu-Amara M., Gurusamy K.S., Glantzounis G., Fuller B., Davidson B.R.R. Pharmacological interventions versus no pharmacological intervention for ischaemia reperfusion injury in liver resection surgery performed under vascular control. Cochrane Database Syst. Rev. 2009:CD008154. doi: 10.1002/14651858.CD007472.pub2.
84. Álvarez-Ayuso L., Gómez-Heras S.G., Jorge E., Guardiola J.M., Torralba A., Granado F., Millán I., Roda J.R., Calero P., Fernández-García H., et al. Vitamin E action on oxidative state, endothelial function and morphology in long-term myocardial preservation. Histol. Histopathol. 2010;25:577–587.
85. Miller E.R., 3rd, Pastor-Barriuso R., Dalal D., Riemersma R.A., Appel L.J., Guallar E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality Background: Experimental models and observational studies. Ann. Intern. Med. 2005;142:37–46. doi: 10.7326/0003-4819-142-1-200501040-00110.
86. Schulz R. Intracellular Targets of Matrix Metalloproteinase-2 in Cardiac Disease: Rationale and Therapeutic Approaches. Annu. Rev. Pharmacol. Toxicol. 2007;47:211–242. doi: 10.1146/annurev.pharmtox.47.120505.105230.
87. Burwell L.S., Nadtochiy S.M., Tompkins A.J., Young S., Brookes P.S. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 2006;394:627–634. doi: 10.1042/BJ20051435.
88. Gladwin M.T., Schechter A.N., Kim-Shapiro D.B., Patel R.P., Hogg N., Shiva S., Cannon R.O., Kelm M., Wink D.A., Espey M.G., et al. The Emerging Biology of the Nitrite Anion. Nat. Chem. Biol. 2005;1:308–314. doi: 10.1038/nchembio1105-308.
89. Downey J.M., Cohen M.V. A really radical observation. A comment on Penna et al. in Basic Res Cardiol (2006) 101:180-189. Basic Res. Cardiol. 2006;101:190–191. doi: 10.1007/s00395-006-0586-3.
90. Wang R. Gasotransmitters: Growing pains and joys. Trends Biochem. Sci. 2014;39:227–232. doi: 10.1016/j.tibs.2014.03.003.
91. Dong B.M., Abano J.B., Egan T.M. Nitric oxide ventilation of rat lungs from non-heart-beating donors improves posttransplant function. Am. J. Transplant. 2009;9:2707–2715. doi: 10.1111/j.1600-6143.2009.02840.x.
92. Ozaki K.S., Yoshida J., Ueki S., Pettigrew G.L., Ghonem N., Sico R.M., Lee L.Y., Shapiro R., Lakkis F.G., Pacheco-Silva A., et al. Carbon monoxide inhibits apoptosis during cold storage and protects kidney grafts donated after cardiac death. Transpl. Int. 2012;25:107–117. doi: 10.1111/j.1432-2277.2011.01363.x.
93. Nath K.A. Preservation of the kidney by carbon monoxide: A black swan phenomenon. Kidney Int. 2008;74:989–991. doi: 10.1038/ki.2008.423.
94. Wu D., Wang J., Li H., Xue M., Ji A., Li Y. Role of hydrogen sulfide in ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2015;2015:186908. doi: 10.1155/2015/186908.
95. Kajimura M., Nakanishi T., Takenouchi T., Morikawa T., Hishiki T., Yukutake Y., Suematsu M. Gas biology: Tiny molecules controlling metabolic systems. Respir. Physiol. Neurobiol. 2012;184:139–148. doi: 10.1016/j.resp.2012.03.016.
96. Iida A., Nosaka N., Yumoto T., Knaup E., Naito H., Nishiyama C., Yamakawa Y., Tsukahara K., Terado M., Sato K., et al. The clinical application of hydrogen as a medical treatment. Acta Med. Okayama. 2016;70:331–338.
97. Abraini J.H., Gardette-Chauffour M.C., Martinez E., Rostain J.C., Lemaire C. Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen-helium-oxygen mixture. J. Appl. Physiol. 1994;76:1113–1118. doi: 10.1152/jappl.1994.76.3.1113.
98. Dole M., Wilson F.R., Fife W.P. Hyperbaric Hydrogen Therapy: A possible Treatment for Cancer. Science. 1975;190:152–154. doi: 10.1126/science.1166304.
99. Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., Katsura K.I., Katayama Y., Asoh S., Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007;13:688–694. doi: 10.1038/nm1577.
100. Li Q., Yu P., Zeng Q., Luo B., Cai S., Hui K., Yu G., Zhu C., Chen X., Duan M., et al. Neuroprotective Effect of Hydrogen-Rich Saline in Global Cerebral Ischemia/Reperfusion Rats: Up-Regulated Tregs and Down-Regulated miR-21, miR-210 and NF-κB Expression. Neurochem. Res. 2016;41:2655–2665. doi: 10.1007/s11064-016-1978-x.
101. Suzuki Y., Sano M., Hayashida K., Ohsawa I., Ohta S., Fukuda K. Are the effects of α-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett. 2009;583:2157–2159. doi: 10.1016/j.febslet.2009.05.052.
102. Tamasawa A., Mochizuki K., Hariya N., Saito M., Ishida H., Doguchi S., Yanagiya S., Osonoi T. Hydrogen gas production is associated with reduced interleukin-1β mRNA in peripheral blood after a single dose of acarbose in Japanese type 2 diabetic patients. Eur. J. Pharmacol. 2015;762:96–101. doi: 10.1016/j.ejphar.2015.04.051.
103. Oharazawa H., Igarashi T., Yokota T., Fujii H., Suzuki H., Machide M., Takahashi H., Ohta S., Ohsawa I. Protection of the retina by rapid diffusion of hydrogen: Administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Investig. Ophthalmol. Vis. Sci. 2010;51:487–492. doi: 10.1167/iovs.09-4089.
104. Hayashida K., Sano M., Ohsawa I., Shinmura K., Tamaki K., Kimura K., Endo J., Katayama T., Kawamura A., Kohsaka S., et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 2008;373:30–35. doi: 10.1016/j.bbrc.2008.05.165.
105. Zhang Y., Xu J., Long Z., Wang C., Wang L., Sun P., Li P., Wang T. Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways. Front. Pharmacol. 2016;7:1–12. doi: 10.3389/fphar.2016.00392.
106. Cardinal J.S., Zhan J., Wang Y., Sugimoto R., Tsung A., McCurry K.R., Billiar T.R., Nakao A. Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney Int. 2010;77:101–109. doi: 10.1038/ki.2009.421.
107. LeBaron T.W., Larson A.J., Ohta S., Mikami T., Barlow J., Bulloch J., DeBeliso M. Acute Supplementation with Molecular Hydrogen Benefits Submaximal Exercise Indices. Randomized, Double-Blinded, Placebo-Controlled Crossover Pilot Study. J. Lifestyle Med. 2019;9:36–43. doi: 10.15280/jlm.2019.9.1.36.
108. LeBaron T.W., Laher I., Kura B., Slezak J. Hydrogen gas: From clinical medicine to an emerging ergogenic molecule for sports athletes. Can. J. Physiol. Pharmacol. 2019 doi: 10.1139/cjpp-2019-0067. [Epub ahead of print]
109. Ito M., Hirayama M., Yamai K., Goto S., Ito M., Ichihara M., Ohno K. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med. Gas Res. 2012;2:15. doi: 10.1186/2045-9912-2-15.
110. Hirayama M., Ito M., Minato T., Yoritaka A., LeBaron T., Ohno K. Inhalation of hydrogen gas elevates urinary 8-hydroxy-2′-deoxyguanine in Parkinson’s disease. Med. Gas Res. 2018;8:144–149.
111. Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim. Biophys. Acta Gen. Subj. 2012;1820:586–594. doi: 10.1016/j.bbagen.2011.05.006.
112. Ono H., Nishijima Y., Adachi N., Sakamoto M., Kudo Y., Kaneko K., Nakao A., Imaoka T. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med. Gas Res. 2012;2:21. doi: 10.1186/2045-9912-2-21.
113. Huang C.S., Kawamura T., Toyoda Y., Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic. Res. 2010;44:971–982. doi: 10.3109/10715762.2010.500328.
114. Yu J., Yu Q., Liu Y., Zhang R., Xue L. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells. PLoS ONE. 2017;12:1–12. doi: 10.1371/journal.pone.0173645.
115. Gao Q., Song H., Wang X.T., Liang Y., Xi Y.J., Gao Y., Guo Q.J., Lebaron T., Luo Y.X., Li S.C., et al. Molecular hydrogen increases resilience to stress in mice. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-10362-6.
116. Pacher P., Beckman J.S., Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006.
117. Hanaoka T., Kamimura N., Yokota T., Takai S., Ohta S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med. Gas Res. 2011;1:18. doi: 10.1186/2045-9912-1-18.
118. Huang L. Molecular hydrogen: A therapeutic antioxidant and beyond. Med. Gas Res. 2016;6:219–222. doi: 10.4103/2045-9912.196904.
119. Hood E., Simone E., Wattamwar P., Dziubla T., Muzykantov V. Nanocarriers for vascular delivery of antioxidants. Nanomedicine. 2011;6:1257–1272. doi: 10.2217/nnm.11.92.
120. Penders J., Kissner R., Koppenol W.H. ONOOH does not react with H2: Potential beneficial effects of H2 as an antioxidant by selective reaction with hydroxyl radicals and peroxynitrite. Free Radic. Biol. Med. 2014;75:191–194. doi: 10.1016/j.freeradbiomed.2014.07.025.
121. Wood K.C., Gladwin M.T. The hydrogen highway to reperfusion therapy. Nat. Med. 2007;13:673–674. doi: 10.1038/nm0607-673.
122. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B., Tsang W. Critical Review of rate constants for reactions of hydrated electronsChemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane. J. Phys. Chem. Ref. Data. 1988;17:513.
123. Dixon B.J., Tang J., Zhang J.H. The evolution of molecular hydrogen: A noteworthy potential therapy with clinical significance. Med. Gas Res. 2013;3:10. doi: 10.1186/2045-9912-3-10.
124. Kamimura N., Nishimaki K., Ohsawa I., Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity. 2011;19:1396–1403. doi: 10.1038/oby.2011.6.
125. Kamimura N., Ichimiya H., Iuchi K., Ohta S. Molecular hydrogen stimulates the gene expression of transcriptional coactivator pgc-1α to enhance fatty acid metabolism. npj Aging Mech. Dis. 2016;2:16008. doi: 10.1038/npjamd.2016.8.
126. Ge L., Yang M., Yang N.-N., Yin X.-X., Song W.-G. Molecular hydrogen: A preventive and therapeutic medical gas for various diseases. Oncotarget. 2017;8:102653–102673. doi: 10.18632/oncotarget.21130.
127. Ohta S. Molecular hydrogen as a novel antioxidant: Overview of the advantages of hydrogen for medical applications. Methods Enzymol. 2015;555:289–317.
128. Nguyen T., Nioi P., Pickett C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009;284:13291–13295. doi: 10.1074/jbc.R900010200.
129. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J.D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86. doi: 10.1101/gad.13.1.76.
130. Baird L., Dinkova-Kostova A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol. 2011;85:241–272. doi: 10.1007/s00204-011-0674-5.
131. Raghunath A., Sundarraj K., Nagarajan R., Arfuso F., Bian J., Kumar A.P., Sethi G., Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. doi: 10.1016/j.redox.2018.05.002.
132. Ma Q. Role of NRF2 in oxidative stress ans toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320.
133. Yuan J., Wang D., Liu Y., Chen X., Zhang H., Shen F., Liu X., Fu J. Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. J. Surg. Res. 2018;228:238–246. doi: 10.1016/j.jss.2018.03.024.
134. Jiang Y., Liu G., Zhang L., Cheng S., Luo C., Liao Y., Guo S. Therapeutic efficacy of hydrogen-rich saline alone and in combination with PI3K inhibitor in non-small cell lung cancer. Mol. Med. Rep. 2018;18:2182–2190. doi: 10.3892/mmr.2018.9168.
135. López-Bernardo E., Anedda A., Sánchez-Pérez P., Acosta-Iborra B., Cadenas S. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes. Free Radic. Biol. Med. 2015;88:427–438. doi: 10.1016/j.freeradbiomed.2015.03.032.
136. Bell K.F., Al-Mubarak B., Fowler J.H., Baxter P.S., Gupta K., Tsujita T., Chowdhry S., Patani R., Chandran S., Horsburgh K., et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc. Natl. Acad. Sci. 2011;108:E1–E2. doi: 10.1073/pnas.1015229108.
137. Jo S.-K., Ko G.J., Boo C.S., Cho W.Y., Kim H.K. Heat Preconditioning Attenuates Renal Injury in Ischemic ARF in Rats: Role of Heat-Shock Protein 70 on NF-κB–Mediated Inflammation and on Tubular Cell Injury. J. Am. Soc. Nephrol. 2006;17:3082–3092. doi: 10.1681/ASN.2005101077.
138. Zálešák M., Kura B., Graban J., Farkašová V., Slezák J., Ravingerová T. Molecular hydrogen potentiates beneficial anti-infarct effect of hypoxic postconditioning in isolated rat hearts: A novel cardioprotective intervention. Can. J. Physiol. Pharmacol. 2017;95:888–893. doi: 10.1139/cjpp-2016-0693.
139. Ristow M., Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis) Exp. Gerontol. 2010;45:410–418. doi: 10.1016/j.exger.2010.03.014.
140. Murakami Y., Ito M., Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE. 2017;12:1–14. doi: 10.1371/journal.pone.0176992.
141. Kura B., Kalocayova B., LeBaron T.W., Frimmel K., Buday J., Surovy J., Slezak J. Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium. Mol. Cell. Biochem. 2019;0:1–12. doi: 10.1007/s11010-019-03512-z.
142. Zhang C.B., Tang Y.C., Xu X.J., Guo S.X., Wang H.Z. Hydrogen gas inhalation protects against liver ischemia/reperfusion injury by activating the NF-κB signaling pathway. Exp. Ther. Med. 2015;9:2114–2120. doi: 10.3892/etm.2015.2385.
143. Huang C.S., Kawamura T., Peng X., Tochigi N., Shigemura N., Billiar T.R., Nakao A., Toyoda Y. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation. Biochem. Biophys. Res. Commun. 2011;408:253–258. doi: 10.1016/j.bbrc.2011.04.008.
144. Nishiwaki H., Ito M., Negishi S., Sobue S., Ichihara M., Ohno K. Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: Meta-analyses of gene expression profiles. Free Radic. Res. 2018;52:434–445. doi: 10.1080/10715762.2018.1439166.
145. Sobue S., Inoue C., Hori F., Qiao S., Murate T., Ichihara M. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response. Biochem. Biophys. Res. Commun. 2017;493:318–324. doi: 10.1016/j.bbrc.2017.09.024.
146. Magenta A., Greco S., Gaetano C., Martelli F. Oxidative stress and microRNAs in vascular diseases. Int. J. Mol. Sci. 2013;14:17319–17346. doi: 10.3390/ijms140917319.
147. Sun Q., Kang Z., Cai J., Liu W., Liu Y., Zhang J.H., Denoble P.J., Tao H., Sun X. Hydrogen-Rich Saline Protects Myocardium Against Ischemia/Reperfusion Injury in Rats. Exp. Biol. Med. 2009;234:1212–1219. doi: 10.3181/0812-RM-349.
148. Ikeda S., Kong S.W., Lu J., Bisping E., Zhang H., Allen P.D., Golub T.R., Pieske B., Pu W.T. Altered microRNA expression in human heart disease. Physiol. Genomics. 2007;31:367–373. doi: 10.1152/physiolgenomics.00144.2007.
149. Qin Z.X., Yu P., Qian D.H., Song M.B., Tan H., Yu Y., Li W., Wang H., Liu J., Wang Q., et al. Hydrogen-rich saline prevents neointima formation after carotid balloon injury by suppressing ROS and the TNF-α/NF-κB pathway. Atherosclerosis. 2012;220:343–350. doi: 10.1016/j.atherosclerosis.2011.11.002.
150. Lan J., Huang Z., Han J., Shao J., Huang C. Redox regulation of microRNAs in cancer. Cancer Lett. 2018;418:250–259. doi: 10.1016/j.canlet.2018.01.010.
151. Gong Y.-Y., Luo J.-Y., Wang L., Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid. Redox Signal. 2018;29:1092–1107. doi: 10.1089/ars.2017.7328.
152. Simone N.L., Soule B.P., Ly D., Saleh A.D., Savage J.E., DeGraff W., Cook J., Harris C.C., Gius D., Mitchell J.B. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE. 2009;4:1–7. doi: 10.1371/journal.pone.0006377.
153. Zhu H., Fan G.C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc. Res. 2012;94:284–292. doi: 10.1093/cvr/cvr291.
154. Viczenczova C., Szeiffova Bacova B., Egan Benova T., Kura B., Yin C., Weismann P., Kukreja R., Slezak J., Tribulova N. Myocardial connexin-43 and PKC signalling are involved in adaptation of the heart to irradiation-induced injury: Implication of miR-1 and miR-21. Gen. Physiol. Biophys. 2016;35:215–222. doi: 10.4149/gpb_2015038.
155. Liu J., Zhu H., Yang X., Ge Y., Zhang C., Qin Q., Lu J., Zhan L., Cheng H., Sun X. MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumor Biol. 2014;35:3975–3979. doi: 10.1007/s13277-014-1623-8.
156. Chen Y., Jiang J., Miao H., Chen X., Sun X., Li Y. Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Int. J. Mol. Med. 2013;31:597–606.
157. Riley P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 1994;65:27–33. doi: 10.1080/09553009414550041.
158. Zhao W., Robbins M. Inflammation and Chronic Oxidative Stress in Radiation-Induced Late Normal Tissue Injury: Therapeutic Implications. Curr. Med. Chem. 2009;16:130–143. doi: 10.2174/092986709787002790.
159. Yang Y., Zhu Y., Xi X. Anti-inflammatory and antitumor action of hydrogen via reactive oxygen species. Oncol. Lett. 2018;16:2771–2776.
160. Xie K., Yu Y., Pei Y., Hou L., Chen S., Xiong L., Wang G. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock. 2010;34:90–97. doi: 10.1097/SHK.0b013e3181cdc4ae.
161. Sun H., Chen L., Zhou W., Hu L., Li L., Tu Q., Chang Y., Liu Q., Sun X., Wu M., et al. The protective role of hydrogen-rich saline in experimental liver injury in mice. J. Hepatol. 2011;54:471–480. doi: 10.1016/j.jhep.2010.08.011.
162. Hattori Y., Kotani T., Tsuda H., Mano Y., Tu L., Li H., Hirako S., Ushida T., Imai K., Nakano T., et al. Maternal molecular hydrogen treatment attenuates lipopolysaccharide-induced rat fetal lung injury. Free Radic. Res. 2015;49:1026–1037. doi: 10.3109/10715762.2015.1038257.
163. Varga V., Németh J., Oláh O., Tóth-Szűki V., Kovács V., Remzső G., Domoki F. Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharmacol. Sin. 2018;39:1273–1283. doi: 10.1038/aps.2017.148.
164. Qian L., Li B., Cao F., Huang Y., Liu S., Cai J., Gao F. Hydrogen-rich PBS protects cultured human cells from ionizing radiation-induced cellular damage. Nucl. Technol. Radiat. Prot. 2010;25:23–29. doi: 10.2298/NTRP1001023Q.
165. Xiao H.W., Li Y., Luo D., Dong J.L., Zhou L.X., Zhao S.Y., Zheng Q.S., Wang H.C., Cui M., Fan S.J. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota. Exp. Mol. Med. 2018;50:e433. doi: 10.1038/emm.2017.246.
166. Qian L., Cao F., Cui J., Wang Y., Huang Y., Chuai Y., Zaho L., Jiang H., Cai J. The Potential Cardioprotective Effects of Hydrogen in Irradiated Mice. J. Radiat. Res. 2010;51:741–747. doi: 10.1269/jrr.10093.
167. Qian L., Li B., Cai J., Gao F. The Hypothesis of an Effective Safe and Novel Radioprotective Agent Hydrogen-rich Solution La Hipótesis de una Solución rica en Hidrógeno como Agente Radioprotector Novedoso, Seguro y Efectivo. Am. J. Transplant. 2010;59:122–124.
168. Mei K., Zhao S., Qian L., Li B., Ni J., Cai J. Hydrogen protects rats from dermatitis caused by local radiation. J. Dermatolog. Treat. 2014;25:182–188. doi: 10.3109/09546634.2012.762639.
169. Watanabe S., Fujita M., Ishihara M., Tachibana S., Yamamoto Y., Kaji T., Kawauchi T., Kanatani Y. Protective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats. J. Radiat. Res. 2014;55:1107–1113. doi: 10.1093/jrr/rru067.
170. Ramachandran A., Madesh M., Balasubramanian K.A. Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions. J. Gastroenterol. Hepatol. 2000;15:109–120. doi: 10.1046/j.1440-1746.2000.02059.x.
171. Kang K.M., Kang Y.N., Choi I.B., Gu Y., Kawamura T., Toyoda Y., Nakao A. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med. Gas Res. 2011;1:11. doi: 10.1186/2045-9912-1-11.
172. Conklin K.A. Dietary Antioxidants During Cancer Chemotherapy: Impact on Chemotherapeutic Effectiveness and Development of Side Effects. Nutr. Cancer. 2000;37:1–18. doi: 10.1207/S15327914NC3701_1.
173. Kitamura A., Kobayashi S., Matsushita T., Fujinawa H., Murase K. Experimental verification of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using dynamic contrast-enhanced CT. Br. J. Radiol. 2010;83:509–514. doi: 10.1259/bjr/25604811.
174. Shinbo T., Kokubo K., Sato Y., Hagiri S., Hataishi R., Hirose M., Kobayashi H. Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Circ. Physiol. 2013;305:H542–H550. doi: 10.1152/ajpheart.00844.2012.
175. Fukuda K.I., Asoh S., Ishikawa M., Yamamoto Y., Ohsawa I., Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem. Biophys. Res. Commun. 2007;361:670–674. doi: 10.1016/j.bbrc.2007.07.088.
176. Sakai K., Cho S., Shibata I., Yoshitomi O., Maekawa T., Sumikawa K. Inhalation of hydrogen gas protects against myocardial stunning and infarction in swine. Scand. Cardiovasc. J. 2012;46:183–189. doi: 10.3109/14017431.2012.659676.
177. Cole A.R., Perry D.A., Raza A., Nedder A.P., Pollack E., Regan W.L., van den Bosch S.J., Polizzotti B.D., Yang E., Davila D., et al. Perioperatively Inhaled Hydrogen Gas Diminishes Neurologic Injury Following Experimental Circulatory Arrest in Swine. JACC Basic to Transl. Sci. 2019;4:176–187. doi: 10.1016/j.jacbts.2018.11.006.
178. Lefer D.J., Nakanishi K., Johnston W.E., Vinten-Johansen J. Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion in dogs. Circulation. 1993;88:2337–2350. doi: 10.1161/01.CIR.88.5.2337.
179. Wong P.S.Y., Eiserich J.P., Reddy S., Lopez C.L., Cross C.E., van der VlieT A. Inactivation of glutathione S-Transferases by nitric oxide-derived oxidants: Exploring a role for tyrosine nitration. Arch. Biochem. Biophys. 2001;394:216–228. doi: 10.1006/abbi.2001.2532.
180. Zhang Y., Sun Q., He B., Xiao J., Wang Z., Sun X. Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int. J. Cardiol. 2011;148:91–95. doi: 10.1016/j.ijcard.2010.08.058.
181. Javadov S., Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell. Physiol. Biochem. 2007;20:1–22. doi: 10.1159/000103747.
182. Jing L., Wang Y., Zhao X.M., Zhao B., Han J.J., Qin S.C., Sun X.J. Cardioprotective Effect of Hydrogen-rich Saline on Isoproterenol-induced Myocardial Infarction in Rats. Hear. Lung Circ. 2015;24:602–610. doi: 10.1016/j.hlc.2014.11.018.
183. Zhang Y., Long Z., Xu J., Tan S., Zhang N., Li A., Wang L., Wang T. Hydrogen inhibits isoproterenol-induced autophagy in cardiomyocytes in vitro and in vivo. Mol. Med. Rep. 2017;16:8253–8258. doi: 10.3892/mmr.2017.7601.
184. Gao Y., Yang H., Chi J., Xu Q., Zhao L., Yang W., Liu W., Yang W. Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy. Cell. Physiol. Biochem. 2017;43:1503–1514. doi: 10.1159/000481974.
185. Gao Y., Yang H., Fan Y., Li L., Fang J., Yang W. Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and Apoptosis. Mediators Inflamm. 2016;2016:3675910. doi: 10.1155/2016/1320365.
186. Huo T.T., Zeng Y., Liu X.N., Sun L., Han H.Z., Chen H.G., Lu Z.H., Huang Y., Nie H., Dong H.L., et al. Hydrogen-rich saline improves survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation in Rats. Anesth. Analg. 2014;119:368–380. doi: 10.1213/ANE.0000000000000303.
187. Hayashida K., Sano M., Kamimura N., Yokota T., Suzuki M., Maekawa Y., Kawamura A., Abe T., Ohta S., Fukuda K., et al. H(2) gas improves functional outcome after cardiac arrest to an extent comparable to therapeutic hypothermia in a rat model. J. Am. Heart Assoc. 2012;1:1–13. doi: 10.1161/JAHA.112.003459.
188. Yu Y.S., Zheng H. Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol. Cell. Biochem. 2012;365:233–242. doi: 10.1007/s11010-012-1264-4.
189. Kato R., Nomura A., Sakamoto A., Yasuda Y., Amatani K., Nagai S., Sen Y., Ijiri Y., Okada Y., Yamaguchi T., et al. Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters. Am. J. Physiol. Circ. Physiol. 2014;307:H1626–H1633. doi: 10.1152/ajpheart.00228.2014.
190. Noda K., Shigemura N., Tanaka Y., Kawamura T., Hyun Lim S., Kokubo K., Billiar T.R., Bermudez C.A., Kobayashi H., Nakao A. A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J. Hear. Lung Transplant. 2013;32:241–250. doi: 10.1016/j.healun.2012.11.004.
191. Ohno K., Ito M., Ichihara M., Ito M. Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases. Oxid. Med. Cell. Longev. 2012;2012:1–11. doi: 10.1155/2012/353152.
192. Tan M., Sun X., Guo L., Su C., Sun X., Xu Z. Hydrogen as additive of HTK solution fortifies myocardial preservation in grafts with prolonged cold ischemia. Int. J. Cardiol. 2013;167:383–390. doi: 10.1016/j.ijcard.2011.12.109.
193. Noda K., Tanaka Y., Shigemura N., Kawamura T., Wang Y., Masutani K., Sun X., Toyoda Y., Bermudez C.A., Nakao A. Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl. Int. 2012;25:1213–1222. doi: 10.1111/j.1432-2277.2012.01542.x.
194. Nakao A., Kaczorowski D.J., Wang Y., Cardinal J.S., Buchholz B.M., Sugimoto R., Tobita K., Lee S., Toyoda Y., Billiar T.R., et al. Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both. J. Hear. Lung Transplant. 2010;29:544–553. doi: 10.1016/j.healun.2009.10.011.
195. Liu Y., Yang L., Tao K., Vizcaychipi M.P., Lloyd D.M., Sun X., Irwin M.G., Ma D., Yu W. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release. BMC Gastroenterol. 2014;14:1–9. doi: 10.1186/1471-230X-14-12.
196. Bolli R., Becker L., Gross G., Mentzer R., Balshaw D., Lathrop D.A. Myocardial Protection at a Crossroads: The Need for Translation Into Clinical Therapy Roberto. Circ. Res. 2004;95:125–134. doi: 10.1161/01.RES.0000137171.97172.d7.
197. Katsumata Y., Sano F., Abe T., Tamura T., Fujisawa T., Shiraishi Y., Kohsaka S., Ueda I., Homma K., Suzuki M., et al. The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling After Percutaneous Coronary Intervention for ST-Elevated Myocardial Infarction ― First Pilot Study in Humans. Circ. J. 2017;81:940–947. doi: 10.1253/circj.CJ-17-0105.