Hydrogen-rich water to improve mood, anxiety and autonomic nerve function in everyday lifeScientific Research

Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life

DOI: 10.4103/2045-9912.222448

 

Abstract

Everyone strives for a healthy and vibrant life. In order to improve quality of life (QOL), maintain health, and prevent various diseases, it is important to assess the impact of potential QOL-increasing factors. Chronic oxidative stress and inflammation lead to worsening central nervous system function, resulting in poor quality of life. In healthy individuals, aging, work stress, and multiple hours of cognitive load also contribute to increased oxidative stress, suggesting that preventing the build-up of daily stress and work-induced oxidative stress contributes to the maintenance of quality of life and contributes to Improve aging. Hydrogen has antioxidant properties that prevent inflammation, which can help improve quality of life. This study aimed to investigate the effect of drinking hydrogen-rich water (HRW) on quality of life in adult volunteers through psychophysiological tests including questionnaires and tests of autonomic and cognitive function. In this double-blind, placebo-controlled, two-way crossover study, 26 volunteers (13 women, 13 men; mean age 34.4 ± 9.9 years) were randomized to oral HRW (600 mL/day) or placebo Water (PLW, 600 ml/day) for 4 weeks. The rate of change in K6 score and resting-state sympathetic activity (post-treatment/pre-treatment) after HRW administration was significantly lower than after PLW administration.

 

Results

These results suggest that HRW may improve quality of life by increasing the effects of central nervous system function, including mood, anxiety, and autonomic function.

References

Starke RM, Chalouhi N, Ali MS, et al. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10:247-255.  Back to cited text no. 1
2.
Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008;8:2015-2024.  Back to cited text no. 2
3.
Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res. 2010;44:971-982.  Back to cited text no. 3
[PUBMED]
4.
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688-694.  Back to cited text no. 4
[PUBMED]
5.
Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr. 2010;46:140-149.  Back to cited text no. 5
6.
Song G, Li M, Sang H, et al. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res. 2013;54:1884-1893.  Back to cited text no. 6
[PUBMED]
7.
Kajiyama S, Hasegawa G, Asano M, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008;28:137-143.  Back to cited text no. 7
8.
Ito M, Ibi T, Sahashi K, Ichihara M, Ito M, Ohno K. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med Gas Res. 2011;1:24.  Back to cited text no. 8
9.
Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res. 2012;2:12.  Back to cited text no. 9
10.
Ben Moussa S, Rouatbi S, Ben Saad H. Incapacity, handicap, and oxidative stress markers of male smokers with and without COPD. Respir Care. 2016;61:668-679.  Back to cited text no. 10
11.
Fuchs-Tarlovsky V, Rivera MA, Altamirano KA, Lopez-Alvarenga JC, Ceballos-Reyes GM. Antioxidant supplementation has a positive effect on oxidative stress and hematological toxicity during oncology treatment in cervical cancer patients. Support Care Cancer. 2013;21:1359-1363.  Back to cited text no. 11
[PUBMED]
12.
Kang KM, Kang YN, Choi IB, et al. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med Gas Res. 2011;1:11.  Back to cited text no. 12
13.
Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305:75-80.  Back to cited text no. 13
[PUBMED]
14.
Casado Á, Castellanos A, López-Fernández ME, et al. Determination of oxidative and occupational stress in palliative care workers. Clin Chem Lab Med. 2011;49:471-477.  Back to cited text no. 14
15.
Ishihara I, Nakano M, Ikushima M, et al. Effect of work conditions and work environments on the formation of 8-OH-dG in nurses and non-nurse female workers. J UOEH. 2008;30:293-308.  Back to cited text no. 15
16.
Fukuda S, Nojima J, Motoki Y, et al. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol Psychol. 2016;118:88-93.  Back to cited text no. 16
17.
Ostojic SM, Stojanovic MD. Hydrogen-rich water affected blood alkalinity in physically active men. Res Sports Med. 2014;22:49-60.  Back to cited text no. 17
18.
Chalder T, Berelowitz G, Pawlikowska T, et al. Development of a fatigue scale. J Psychosom Res. 1993;37:147-153.  Back to cited text no. 18
19.
Fukuda S, Takashima S, Iwase M, Yamaguchi K, Kuratsune H, Watanabe Y. Development and validation of a new fatigue scale for fatigued subjects with and without chronic fatigue syndrome. In: Watanabe Y, Evengård B, Natelson BH, Jason LA, Kuratsune H, eds. Fatigue Science for Human Health. New York: Springer. 2008:89-102.  Back to cited text no. 19
20.
Kessler RC, Andrews G, Colpe LJ, et al. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol Med. 2002;32:959-976.  Back to cited text no. 20
21.
Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385-401.  Back to cited text no. 21
22.
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193-213.  Back to cited text no. 22
23.
Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540-545.  Back to cited text no. 23
24.
Doi Y, Minowa M, Uchiyama M, et al. Psychometric assessment of subjective sleep quality using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) in psychiatric disordered and control subjects. Psychiatry Res. 2000;97:165-172.  Back to cited text no. 24
[PUBMED]
25.
Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res. 2008;17:152-158.  Back to cited text no. 25
26.
Takegami M, Suzukamo Y, Wakita T, et al. Development of a Japanese version of the Epworth Sleepiness Scale (JESS) based on item response theory. Sleep Med. 2009;10:556-565.  Back to cited text no. 26
27.
Tanaka M, Fukuda S, Mizuno K, et al. Reliability and validity of the Japanese version of the Chalder Fatigue Scale among youth in Japan. Psychol Rep. 2008;103:682-690.  Back to cited text no. 27
[PUBMED]
28.
Shima S, Shikano T, Kitamura T. New self-rating scales for depression. Clin Psychiatry. 1985;27:717-723.  Back to cited text no. 28
29.
Kanaya N, Hirata N, Kurosawa S, Nakayama M, Namiki A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology. 2003;98:34-40.  Back to cited text no. 29
[PUBMED]
30.
Takusagawa M, Komori S, Umetani K, et al. Alterations of autonomic nervous activity in recurrence of variant angina. Heart. 1999;82:75-81.  Back to cited text no. 30
31.
Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220-222.  Back to cited text no. 31
[PUBMED]
32.
Pomeranz B, Macaulay RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151-153.  Back to cited text no. 32
[PUBMED]
33.
Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482-492.  Back to cited text no. 33
34.
Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ. Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol. 1989;14:1139-1148.  Back to cited text no. 34
[PUBMED]
35.
Tanaka M, Tajima S, Mizuno K, et al. Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. J Physiol Sci. 2015;65:483-498.  Back to cited text no. 35
36.
Montano N, Porta A, Cogliati C, et al. Heart rate variability explored in the frequency domain: a tool to investigate the link between heart and behavior. Neurosci Biobehav Rev. 2009;33:71-80.  Back to cited text no. 36
37.
Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol. 2003;90:317-325.  Back to cited text no. 37
38.
Tajima K, Tanaka M, Mizuno K, Okada N, Rokushima K, Watanabe Y. Effects of bathing in micro-bubbles on recovery from moderate mental fatigue. Ergonomia IJE&HF. 2008;30:134-145.  Back to cited text no. 38
39.
Mizuno K, Tanaka M, Tajima K, Okada N, Rokushima K, Watanabe Y. Effects of mild-stream bathing on recovery from mental fatigue. Med Sci Monit. 2010;16:Cr8-14.  Back to cited text no. 39
[PUBMED]
40.
Mizuno K, Tanaka M, Yamaguti K, Kajimoto O, Kuratsune H, Watanabe Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav Brain Funct. 2011;7:17.  Back to cited text no. 40
41.
Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043-1065.  Back to cited text no. 41
[PUBMED]
42.
Kume S, Nishimura Y, Mizuno K, et al. Music improves subjective feelings leading to cardiac autonomic nervous modulation: a pilot study. Front Neurosci. 2017;11:108.  Back to cited text no. 42
43.
Kajimoto O. Development of a method of evaluation of fatigue and its economic impacts. In: Watanabe Y, Evengård B, Natelson BH, Jason LA, Kuratsune H, eds. Fatigue Science for Human Health. New York: Springer. 2008:33-46.  Back to cited text no. 43
44.
Mizuno K, Watanabe Y. Neurocognitive impairment in childhood chronic fatigue syndrome. Front Physiol. 2013;4:87.  Back to cited text no. 44
45.
Mizuno K, Tanaka M, Fukuda S, Imai-Matsumura K, Watanabe Y. Relationship between cognitive functions and prevalence of fatigue in elementary and junior high school students. Brain Dev. 2011;33:470-479.  Back to cited text no. 45
46.
Kawatani J, Mizuno K, Shiraishi S, et al. Cognitive dysfunction and mental fatigue in childhood chronic fatigue syndrome–a 6-month follow-up study. Brain Dev. 2011;33:832-841.  Back to cited text no. 46
47.
Mizuno K, Tanaka M, Fukuda S, Sasabe T, Imai-Matsumura K, Watanabe Y. Changes in cognitive functions of students in the transitional period from elementary school to junior high school. Brain Dev. 2011;33:412-420.  Back to cited text no. 47
48.
Trotti R, Carratelli M, Barbieri M. Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Med. 2002;44:37-40.  Back to cited text no. 48
49.
Nojima J, Motoki Y, Tsuneoka H, et al. ‘Oxidation stress index’ as a possible clinical marker for the evaluation of non-Hodgkin lymphoma. Br J Haematol. 2011;155:528-530.  Back to cited text no. 49
[PUBMED]
50.
Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res. 2010;1328:152-161.  Back to cited text no. 50
[PUBMED]
51.
Matsumoto A, Yamafuji M, Tachibana T, Nakabeppu Y, Noda M, Nakaya H. Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice. Sci Rep. 2013;3:3273.  Back to cited text no. 51
[PUBMED]
52.
Tomofuji T, Kawabata Y, Kasuyama K, et al. Effects of hydrogen-rich water on aging periodontal tissues in rats. Sci Rep. 2014;4:5534.  Back to cited text no. 52
[PUBMED]
53.
Watanabe Y, Kuratsune H, Kajimoto O. Desmond Biochemical indices of fatigue for anti-fatigue strategies and products. In: Matthews G, Desmond PA, Neubauer C, Hancoc PA, eds. The Handbook of Operator Fatigue. CRC Press. 2012:209-224.  Back to cited text no. 53
54.
Ataka S, Tanaka M, Nozaki S, et al. Effects of Applephenon and ascorbic acid on physical fatigue. Nutrition. 2007;23:419-423.  Back to cited text no. 54
55.
Mizuno K, Tanaka M, Nozaki S, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24:293-299.  Back to cited text no. 55
56.
Mizuma H, Tanaka M, Nozaki S, et al. Daily oral administration of crocetin attenuates physical fatigue in human subjects. Nutr Res. 2009;29:145-150.  Back to cited text no. 56
57.
García-Niño WR, Zatarain-Barrón ZL, Hernández-Pando R, Vega-Garcia CC, Tapia E, Pedraza-Chaverri J. Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr(VI): effect of curcumin. Biol Trace Elem Res. 2015;167:130-145.  Back to cited text no. 57
58.
Atmaca M, Tezcan E, Kuloglu M, Ustundag B, Tunckol H. Antioxidant enzyme and malondialdehyde values in social phobia before and after citalopram treatment. Eur Arch Psychiatry Clin Neurosci. 2004;254:231-235.  Back to cited text no. 58
[PUBMED]
59.
Atmaca M, Kuloglu M, Tezcan E, Ustundag B. Antioxidant enzyme and malondialdehyde levels in patients with social phobia. Psychiatry Res. 2008;159:95-100.  Back to cited text no. 59
60.
Maurya PK, Noto C, Rizzo LB, et al. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:134-144.  Back to cited text no. 60
61.
Arranz L, Guayerbas N, De la Fuente M. Impairment of several immune functions in anxious women. J Psychosom Res. 2007;62:1-8.  Back to cited text no. 61
62.
Bouayed J, Rammal H, Younos C, Soulimani R. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol. 2007;564:146-149.  Back to cited text no. 62
[PUBMED]
63.
Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:214-223.  Back to cited text no. 63
64.
Nakatomi Y, Mizuno K, Ishii A, et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J Nucl Med. 2014;55:945-950.  Back to cited text no. 64
[PUBMED]
65.
Castanon N, Luheshi G, Laye S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci. 2015;9:229.  Back to cited text no. 65
66.
Salim S, Chugh G, Asghar M. Inflammation in anxiety. Adv Protein Chem Struct Biol. 2012;88:1-25.  Back to cited text no. 66
67.
Liu L, Mills PJ, Rissling M, et al. Fatigue and sleep quality are associated with changes in inflammatory markers in breast cancer patients undergoing chemotherapy. Brain Behav Immun. 2012;26:706-713.  Back to cited text no. 67
68.
Tian Y, Guo S, Zhang Y, Xu Y, Zhao P, Zhao X. Effects of hydrogen-rich saline on hepatectomy-induced postoperative cognitive dysfunction in old mice. Mol Neurobiol. 2017;54:2579-2584.  Back to cited text no. 68
[PUBMED]
69.
Johnson AW, Jaaro-Peled H, Shahani N, et al. Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proc Natl Acad Sci USA. 2013;110:12462-12467.  Back to cited text no. 69
[PUBMED]
70.
Bierhaus A, Wolf J, Andrassy M, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci USA. 2003;100:1920-1925.  Back to cited text no. 70
[PUBMED]
71.
Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101:17312-17315.  Back to cited text no. 71
[PUBMED]
72.
Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun. 2007;21:901-912.  Back to cited text no. 72
73.
Mizuno K, Tajima K, Watanabe Y, Kuratsune H. Fatigue correlates with the decrease in parasympathetic sinus modulation induced by a cognitive challenge. Behav Brain Funct. 2014;10:25.  Back to cited text no. 73
74.
Yamaguti K, Tajima S, Kuratsune H. Autonomic dysfunction in chronic fatigue syndrome. Adv Neuroimmune Biol. 2013;4:281-289.  Back to cited text no. 74


Authors:

Mizuno K, Sasaki AT, Ebisu K et al

Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life

DOI: 10.4103/2045-9912.222448

 

Abstract

Everyone strives for a healthy and vibrant life. In order to improve quality of life (QOL), maintain health, and prevent various diseases, it is important to assess the impact of potential QOL-increasing factors. Chronic oxidative stress and inflammation lead to worsening central nervous system function, resulting in poor quality of life. In healthy individuals, aging, work stress, and multiple hours of cognitive load also contribute to increased oxidative stress, suggesting that preventing the build-up of daily stress and work-induced oxidative stress contributes to the maintenance of quality of life and contributes to Improve aging. Hydrogen has antioxidant properties that prevent inflammation, which can help improve quality of life. This study aimed to investigate the effect of drinking hydrogen-rich water (HRW) on quality of life in adult volunteers through psychophysiological tests including questionnaires and tests of autonomic and cognitive function. In this double-blind, placebo-controlled, two-way crossover study, 26 volunteers (13 women, 13 men; mean age 34.4 ± 9.9 years) were randomized to oral HRW (600 mL/day) or placebo Water (PLW, 600 ml/day) for 4 weeks. The rate of change in K6 score and resting-state sympathetic activity (post-treatment/pre-treatment) after HRW administration was significantly lower than after PLW administration.

 

Results

These results suggest that HRW may improve quality of life by increasing the effects of central nervous system function, including mood, anxiety, and autonomic function.

References

Starke RM, Chalouhi N, Ali MS, et al. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10:247-255.  Back to cited text no. 1
2.
Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008;8:2015-2024.  Back to cited text no. 2
3.
Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res. 2010;44:971-982.  Back to cited text no. 3
[PUBMED]
4.
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688-694.  Back to cited text no. 4
[PUBMED]
5.
Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr. 2010;46:140-149.  Back to cited text no. 5
6.
Song G, Li M, Sang H, et al. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res. 2013;54:1884-1893.  Back to cited text no. 6
[PUBMED]
7.
Kajiyama S, Hasegawa G, Asano M, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008;28:137-143.  Back to cited text no. 7
8.
Ito M, Ibi T, Sahashi K, Ichihara M, Ito M, Ohno K. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med Gas Res. 2011;1:24.  Back to cited text no. 8
9.
Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res. 2012;2:12.  Back to cited text no. 9
10.
Ben Moussa S, Rouatbi S, Ben Saad H. Incapacity, handicap, and oxidative stress markers of male smokers with and without COPD. Respir Care. 2016;61:668-679.  Back to cited text no. 10
11.
Fuchs-Tarlovsky V, Rivera MA, Altamirano KA, Lopez-Alvarenga JC, Ceballos-Reyes GM. Antioxidant supplementation has a positive effect on oxidative stress and hematological toxicity during oncology treatment in cervical cancer patients. Support Care Cancer. 2013;21:1359-1363.  Back to cited text no. 11
[PUBMED]
12.
Kang KM, Kang YN, Choi IB, et al. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med Gas Res. 2011;1:11.  Back to cited text no. 12
13.
Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305:75-80.  Back to cited text no. 13
[PUBMED]
14.
Casado Á, Castellanos A, López-Fernández ME, et al. Determination of oxidative and occupational stress in palliative care workers. Clin Chem Lab Med. 2011;49:471-477.  Back to cited text no. 14
15.
Ishihara I, Nakano M, Ikushima M, et al. Effect of work conditions and work environments on the formation of 8-OH-dG in nurses and non-nurse female workers. J UOEH. 2008;30:293-308.  Back to cited text no. 15
16.
Fukuda S, Nojima J, Motoki Y, et al. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol Psychol. 2016;118:88-93.  Back to cited text no. 16
17.
Ostojic SM, Stojanovic MD. Hydrogen-rich water affected blood alkalinity in physically active men. Res Sports Med. 2014;22:49-60.  Back to cited text no. 17
18.
Chalder T, Berelowitz G, Pawlikowska T, et al. Development of a fatigue scale. J Psychosom Res. 1993;37:147-153.  Back to cited text no. 18
19.
Fukuda S, Takashima S, Iwase M, Yamaguchi K, Kuratsune H, Watanabe Y. Development and validation of a new fatigue scale for fatigued subjects with and without chronic fatigue syndrome. In: Watanabe Y, Evengård B, Natelson BH, Jason LA, Kuratsune H, eds. Fatigue Science for Human Health. New York: Springer. 2008:89-102.  Back to cited text no. 19
20.
Kessler RC, Andrews G, Colpe LJ, et al. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol Med. 2002;32:959-976.  Back to cited text no. 20
21.
Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385-401.  Back to cited text no. 21
22.
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193-213.  Back to cited text no. 22
23.
Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540-545.  Back to cited text no. 23
24.
Doi Y, Minowa M, Uchiyama M, et al. Psychometric assessment of subjective sleep quality using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) in psychiatric disordered and control subjects. Psychiatry Res. 2000;97:165-172.  Back to cited text no. 24
[PUBMED]
25.
Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res. 2008;17:152-158.  Back to cited text no. 25
26.
Takegami M, Suzukamo Y, Wakita T, et al. Development of a Japanese version of the Epworth Sleepiness Scale (JESS) based on item response theory. Sleep Med. 2009;10:556-565.  Back to cited text no. 26
27.
Tanaka M, Fukuda S, Mizuno K, et al. Reliability and validity of the Japanese version of the Chalder Fatigue Scale among youth in Japan. Psychol Rep. 2008;103:682-690.  Back to cited text no. 27
[PUBMED]
28.
Shima S, Shikano T, Kitamura T. New self-rating scales for depression. Clin Psychiatry. 1985;27:717-723.  Back to cited text no. 28
29.
Kanaya N, Hirata N, Kurosawa S, Nakayama M, Namiki A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology. 2003;98:34-40.  Back to cited text no. 29
[PUBMED]
30.
Takusagawa M, Komori S, Umetani K, et al. Alterations of autonomic nervous activity in recurrence of variant angina. Heart. 1999;82:75-81.  Back to cited text no. 30
31.
Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220-222.  Back to cited text no. 31
[PUBMED]
32.
Pomeranz B, Macaulay RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151-153.  Back to cited text no. 32
[PUBMED]
33.
Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482-492.  Back to cited text no. 33
34.
Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ. Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol. 1989;14:1139-1148.  Back to cited text no. 34
[PUBMED]
35.
Tanaka M, Tajima S, Mizuno K, et al. Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. J Physiol Sci. 2015;65:483-498.  Back to cited text no. 35
36.
Montano N, Porta A, Cogliati C, et al. Heart rate variability explored in the frequency domain: a tool to investigate the link between heart and behavior. Neurosci Biobehav Rev. 2009;33:71-80.  Back to cited text no. 36
37.
Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol. 2003;90:317-325.  Back to cited text no. 37
38.
Tajima K, Tanaka M, Mizuno K, Okada N, Rokushima K, Watanabe Y. Effects of bathing in micro-bubbles on recovery from moderate mental fatigue. Ergonomia IJE&HF. 2008;30:134-145.  Back to cited text no. 38
39.
Mizuno K, Tanaka M, Tajima K, Okada N, Rokushima K, Watanabe Y. Effects of mild-stream bathing on recovery from mental fatigue. Med Sci Monit. 2010;16:Cr8-14.  Back to cited text no. 39
[PUBMED]
40.
Mizuno K, Tanaka M, Yamaguti K, Kajimoto O, Kuratsune H, Watanabe Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav Brain Funct. 2011;7:17.  Back to cited text no. 40
41.
Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043-1065.  Back to cited text no. 41
[PUBMED]
42.
Kume S, Nishimura Y, Mizuno K, et al. Music improves subjective feelings leading to cardiac autonomic nervous modulation: a pilot study. Front Neurosci. 2017;11:108.  Back to cited text no. 42
43.
Kajimoto O. Development of a method of evaluation of fatigue and its economic impacts. In: Watanabe Y, Evengård B, Natelson BH, Jason LA, Kuratsune H, eds. Fatigue Science for Human Health. New York: Springer. 2008:33-46.  Back to cited text no. 43
44.
Mizuno K, Watanabe Y. Neurocognitive impairment in childhood chronic fatigue syndrome. Front Physiol. 2013;4:87.  Back to cited text no. 44
45.
Mizuno K, Tanaka M, Fukuda S, Imai-Matsumura K, Watanabe Y. Relationship between cognitive functions and prevalence of fatigue in elementary and junior high school students. Brain Dev. 2011;33:470-479.  Back to cited text no. 45
46.
Kawatani J, Mizuno K, Shiraishi S, et al. Cognitive dysfunction and mental fatigue in childhood chronic fatigue syndrome–a 6-month follow-up study. Brain Dev. 2011;33:832-841.  Back to cited text no. 46
47.
Mizuno K, Tanaka M, Fukuda S, Sasabe T, Imai-Matsumura K, Watanabe Y. Changes in cognitive functions of students in the transitional period from elementary school to junior high school. Brain Dev. 2011;33:412-420.  Back to cited text no. 47
48.
Trotti R, Carratelli M, Barbieri M. Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Med. 2002;44:37-40.  Back to cited text no. 48
49.
Nojima J, Motoki Y, Tsuneoka H, et al. ‘Oxidation stress index’ as a possible clinical marker for the evaluation of non-Hodgkin lymphoma. Br J Haematol. 2011;155:528-530.  Back to cited text no. 49
[PUBMED]
50.
Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res. 2010;1328:152-161.  Back to cited text no. 50
[PUBMED]
51.
Matsumoto A, Yamafuji M, Tachibana T, Nakabeppu Y, Noda M, Nakaya H. Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice. Sci Rep. 2013;3:3273.  Back to cited text no. 51
[PUBMED]
52.
Tomofuji T, Kawabata Y, Kasuyama K, et al. Effects of hydrogen-rich water on aging periodontal tissues in rats. Sci Rep. 2014;4:5534.  Back to cited text no. 52
[PUBMED]
53.
Watanabe Y, Kuratsune H, Kajimoto O. Desmond Biochemical indices of fatigue for anti-fatigue strategies and products. In: Matthews G, Desmond PA, Neubauer C, Hancoc PA, eds. The Handbook of Operator Fatigue. CRC Press. 2012:209-224.  Back to cited text no. 53
54.
Ataka S, Tanaka M, Nozaki S, et al. Effects of Applephenon and ascorbic acid on physical fatigue. Nutrition. 2007;23:419-423.  Back to cited text no. 54
55.
Mizuno K, Tanaka M, Nozaki S, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24:293-299.  Back to cited text no. 55
56.
Mizuma H, Tanaka M, Nozaki S, et al. Daily oral administration of crocetin attenuates physical fatigue in human subjects. Nutr Res. 2009;29:145-150.  Back to cited text no. 56
57.
García-Niño WR, Zatarain-Barrón ZL, Hernández-Pando R, Vega-Garcia CC, Tapia E, Pedraza-Chaverri J. Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr(VI): effect of curcumin. Biol Trace Elem Res. 2015;167:130-145.  Back to cited text no. 57
58.
Atmaca M, Tezcan E, Kuloglu M, Ustundag B, Tunckol H. Antioxidant enzyme and malondialdehyde values in social phobia before and after citalopram treatment. Eur Arch Psychiatry Clin Neurosci. 2004;254:231-235.  Back to cited text no. 58
[PUBMED]
59.
Atmaca M, Kuloglu M, Tezcan E, Ustundag B. Antioxidant enzyme and malondialdehyde levels in patients with social phobia. Psychiatry Res. 2008;159:95-100.  Back to cited text no. 59
60.
Maurya PK, Noto C, Rizzo LB, et al. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:134-144.  Back to cited text no. 60
61.
Arranz L, Guayerbas N, De la Fuente M. Impairment of several immune functions in anxious women. J Psychosom Res. 2007;62:1-8.  Back to cited text no. 61
62.
Bouayed J, Rammal H, Younos C, Soulimani R. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol. 2007;564:146-149.  Back to cited text no. 62
[PUBMED]
63.
Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:214-223.  Back to cited text no. 63
64.
Nakatomi Y, Mizuno K, Ishii A, et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J Nucl Med. 2014;55:945-950.  Back to cited text no. 64
[PUBMED]
65.
Castanon N, Luheshi G, Laye S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci. 2015;9:229.  Back to cited text no. 65
66.
Salim S, Chugh G, Asghar M. Inflammation in anxiety. Adv Protein Chem Struct Biol. 2012;88:1-25.  Back to cited text no. 66
67.
Liu L, Mills PJ, Rissling M, et al. Fatigue and sleep quality are associated with changes in inflammatory markers in breast cancer patients undergoing chemotherapy. Brain Behav Immun. 2012;26:706-713.  Back to cited text no. 67
68.
Tian Y, Guo S, Zhang Y, Xu Y, Zhao P, Zhao X. Effects of hydrogen-rich saline on hepatectomy-induced postoperative cognitive dysfunction in old mice. Mol Neurobiol. 2017;54:2579-2584.  Back to cited text no. 68
[PUBMED]
69.
Johnson AW, Jaaro-Peled H, Shahani N, et al. Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proc Natl Acad Sci USA. 2013;110:12462-12467.  Back to cited text no. 69
[PUBMED]
70.
Bierhaus A, Wolf J, Andrassy M, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci USA. 2003;100:1920-1925.  Back to cited text no. 70
[PUBMED]
71.
Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101:17312-17315.  Back to cited text no. 71
[PUBMED]
72.
Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun. 2007;21:901-912.  Back to cited text no. 72
73.
Mizuno K, Tajima K, Watanabe Y, Kuratsune H. Fatigue correlates with the decrease in parasympathetic sinus modulation induced by a cognitive challenge. Behav Brain Funct. 2014;10:25.  Back to cited text no. 73
74.
Yamaguti K, Tajima S, Kuratsune H. Autonomic dysfunction in chronic fatigue syndrome. Adv Neuroimmune Biol. 2013;4:281-289.  Back to cited text no. 74